
Above: example datepicker and timepicker, with selectable themes (using jQuery
UI Theme Switcher). Below: Date/time picker using default style, hidden field, a

24-hour clock and both era and timezone selection, followed by the single
JavaScript statement to create it! Click the buttons on any of these widgets to

change values. Examples of pop-up pickers and other variations follow.

 Andrew_M_Andrews_III =
(AJAX + JSON + XML) * (Consulting + Training);
Got AJAX?
Any+Time™
Whois Search
Client Area
Contact

The Any+Time™ JavaScript Library includes a highly-customizable, jQuery-compatible datepicker/
timepicker (calendar/ clock widget) and a powerful Date/String parse/format utility.

der Mercedes, ach was, der Rolls Royce unter den Datepicker-Plugins
(the Mercedes, no, the Rolls Royce of Datepicker Plugins)

— drweb

Sexy is

.

Let's try

< 2009 2010 2011 >

Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec

Year

Month

Day of Month

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Hour

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

Minute

0

1

2

3

4

5

0

1

2

3

4

5

6

7

8

9

Second

-06:00 (CST--Central Standard Time ±

Time Zone

2
Select a Date and Time

<input type="text" id="DateTimeDemo" />
<script type="text/javascript">
 $("#DateTimeDemo").AnyTime_picker(
 { format: "%Y-%m-%d %H:%i:%s %E %#",
 formatUtcOffset: "%: (%@)",
 hideInput: true,
 placement: "inline" });
</script>

Rip out your old date/time pickers, and drop in Any+Time™ this instant!
Hurry, before you lose another frustrated user!

the best date/time picker out there

— Peter Drinnan, OPCMF

.

It seems like there's a million calendar and clock widgets out there, and when you look past the eye-candy, they
all have one thing in common: they're tedious at best. At worst, counter-intuitive.

Sure, a picker that uses sliders or spinners, or looks like an analog clock face might be cute, but did you ever
notice how long it takes to position one to the correct hour and minute? Or how about choosing a month that's
more than a season away? Worse yet, entering your birth year on a datepicker that forces you to click...
backwards... repeatedly... one... year... at... a... time?

Does your favorite "pretty" picker even work if your user has a keyboard, but not a mouse? Does it scale larger
if the user increases the text size on your page? If not, ask your legal department how they'd feel about an
accessibility lawsuit!

Enough already!

Any+Time™ is different. More powerful, yes, but more importantly, designed with speed and ease-of-use in
mind. And not only can it create a date/time picker with advanced features and options not found in other
calendar/clock widgets, it also allows you to format dates and times the way you want them. Or your database
wants them. Or, better yet, the way your users want them.

And you can still make it sexy, with plenty of styling options. ;)

For starters, take a look at these DATE/TIME ALTERNATIVES:

12-hour or 24-hour clock
custom date/time format (countless possibilities, including JSON and XML)
date-only, time-only, or specific fields!
date/time range limits
era-selection (BCE/CE, BC/AD, etc.)
start week on any day (Sunday, Monday, etc.)
custom base for 2-digit years (1900, 2000, etc.)
UTC offsets and time zones

Then peep these STYLING CHOICES:

custom labels/languages
custom CSS styles
jQuery UI Theming
jQuery UI Theme Switcher
jQuery ThemeRoller
pop-up or always-present picker
visible or hidden field

It's also PROGRAMMER-FRIENDLY:

easy to implement
easy AJAX validation
easy Date/String conversion, including JSON and XML
create multiple pickers at once
easy removal
easy to extend

And let's not forget those USABILITY FEATURES:

single-click value selection
double-click select-and-dismiss
WAI-ARIA 1.0 keyboard accessibility
em-based relative-size

A single JavaScript statement is all you need to add a date and/or time picker to any <input> field! Srsly. See
the example code? It's for reals, yo.

Use AnyTime.Converter to parse a String into a Date, or convert a Date to a String. Many format options are
supported—in fact, most of the fields specified by the MySQL DATE_FORMAT() function!

compatible

extremely easy to use

— TechnoGadge

Any+Time™ uses the free jQuery JavaScript Library as a foundation for robust
performance. An older version (2.x) of this library, based on Prototype, is still available also.

Any+Time™ has been tested compatible with Chrome 4.1, Firefox 3.6, Internet Explorer 8.0, Opera 10.51 and
Safari 4.0, and should work with any version of ECMA-262 (JavaScript, JScript, ECMAScript, etc.) and
HTML/XHTML supported by jQuery.

Any+Time™ follows WIA-ARIA Authoring Practices 1.0 for Date Picker keyboard interaction as closely as
possible, to maximize accessibility without a mouse. Use Tab to navigate between the date and time sections,
and arrows to navigate between time-selection buttons.

Any+Time™ is $ FREE $ under the Creative Commons BY-NC-SA 3.0 License. Tip: site
owners can avoid the need for a commercial license by not charging users to access any page
that uses the library; site developers can avoid the need for a commercial license by not
charging clients to add the library to their site or to modify the library (code that invokes the

library functionality and CSS styles that override the default appearance are not considered modifications as
long as the original source files are not modified in any way). A good rule of thumb is: "If nobody has to pay to
use Any+Time™, then nobody has to pay to use Any+Time™!" If you need a commercial license (or aren't
sure), please contact the author for terms and conditions tailored to your needs.

Follow these easy steps to use the Any+Time™ JavaScript Library on your website!

1. Download

Any+Time™ consists of a JavaScript source file
with a CSS stylesheet file. Both files are
formatted to be human-readable, and they
contain extensive comments to help you
understand and modify them. Right-click on
either link to save the file:

anytime.js - readable JavaScript source
anytime.css - readable CSS stylesheet

You may wish to use the compressed (unformatted, no comments) versions instead, to improve download speed
for your users:

anytimec.js - compressed JavaScript source
anytimec.css - compressed CSS stylesheet

A copy of jQuery is also required:

jquery-1.4.2.min.js - production (compressed) jQuery source

If you want to display locale-specific time zone labels, or allow users to select different UTC offsets with the
timepicker, also get the Basic Time Zone Support file (and modify it to meet your needs):

anytimetz.js - readable JavaScript source for Basic Time Zone Support

 PROTOTYPE LIBRARY USERS:

Version 2.x uses the Prototype JavaScript Framework (prototype.js) instead of jQuery. This older version is
still available:

anytime.prototype.js - Prototype-compatible, readable JavaScript source
anytime.prototype.css - Prototype-compatible, readable CSS stylesheet

Many of the features and behaviors described on this page are different or unavailable in the older version
(check the source file comments for more accurate instructions and information).

2. Save and Include

Save a copy of the JavaScript source and CSS stylesheet files on your web server, remove the last line from
the JavaScript file, and reference both files in your HTML page. For example, if you install jquery.js,
anytime.js and anytime.css in the document root directory, then add the following lines to the <head> section of
the HTML page:

<link rel="stylesheet" type="text/css" href="/anytime.css" />
<script type="text/javascript" src="/jquery.js"></script>
<script type="text/javascript" src="/anytime.js"></script>

If you downloaded Basic Time Zone Support, be sure to include it last:

<script type="text/javascript" src="/anytimetz.js"></script>

For proper formatting, the <link> element must appear before the <script> elements!

3. Create HTML Input Fields

Create your date and/or time field as a simple <input type="text"> element with a unique id attribute.

Here are examples of a date-only field that uses a verbose format, and a time-only field with a Spanish label:

English: <input type="text" id="field1" size="50"
 value="Sunday, July 30th in the Year 1967 CE" />

Español: <input type="text" id="field2" value="12:34" />

4. Add JavaScript (and optional CSS)

Call AnyTime.picker() in your JavaScript code, passing it the id of the input element and any desired options.
Or, use jQuery methods (such as $() or $.find()) to select one-or-more elements and invoke .AnyTime_picker()
on the result, passing the desired options. For example, the code to add pickers to the preceding example fields
could be:

<script type="text/javascript">
 AnyTime.picker("field1",

 { format: "%W, %M %D in the Year %z %E", firstDOW: 1 });
 $("#field2").AnyTime_picker(
 { format: "%H:%i", labelTitle: "Hora",
 labelHour: "Hora", labelMinute: "Minuto" });
</script>

Want a live demonstration? Click one of the following text fields to display the corresponding popup picker! For
the first field, try choosing a year in the very distant past.

English:
Español: 12:34

The first field specifies that the week begins with Monday.

The second field demonstrates a custom style, including a clock pseudo-button for the input field, achieved by
the following CSS:

<style type="text/css">
 #field2 { background-image:url("clock.png");
 background-position:right center; background-repeat:no-repeat;
 border:1px solid #FFC030;color:#3090C0;font-weight:bold}
 #AnyTime--field2 {background-color:#EFEFEF;border:1px solid #CCC}
 #AnyTime--field2 * {font-weight:bold}
 #AnyTime--field2 .AnyTime-btn {background-color:#F9F9FC;
 border:1px solid #CCC;color:#3090C0}
 #AnyTime--field2 .AnyTime-cur-btn {background-color:#FCF9F6;
 border:1px solid #FFC030;color:#FFC030}
 #AnyTime--field2 .AnyTime-focus-btn {border-style:dotted}
 #AnyTime--field2 .AnyTime-lbl {color:black}
 #AnyTime--field2 .AnyTime-hdr {background-color:#FFC030;color:white}
</style>

Refer to the CSS stylesheet for additional details and instructions on custom styles.

Be sure to create the picker after the text field has been added to the page, either by placing your <script>
element after the <input> element, or using jQuery's $(document).ready() function.

When creating a picker with AnyTime.picker() or $.AnyTime_picker(), the following members may be specified
as part of the options argument. Options that are also supported by AnyTime.Converter are denoted by a dagger
(†) symbol:

ajaxOptions
Options to pass to jQuery's $.ajax() method whenever the user dismisses a popup picker or selects
a value in an inline picker. The input's name (or id) and value are passed to the server (appended to
ajaxOptions.data, if present), and the "success" handler sets the input's value to the responseText.
Therefore, the text returned by the server must be valid for the input's date/time format, and the
server must either echo or correct the value chosen by the user. For example, the server for the
following AJAX-enabled picker always changes the day-of-the-month to 1 after the component is
dismissed, no matter what day the user actually selects:

First-of-month: <input type="text" id="AjaxDemo" value="Apr 1, '10"/>
<script type="text/javascript">
 AnyTime.picker("AjaxDemo",
 { ajaxOptions: { url: "ajaxdemo.php" },
 baseYear: 2000,
 earliest: new Date(2000,0,1,0,0,0),
 format: "%b %e, '%y"
 latest: new Date(2099,11,31,23,59,59)
 });
</script>

First-of-month:

If ajaxOptions.success is specified, it is used instead of the default "success" behavior. Refer to the
jQuery documentation for information about that library's Ajax options.

askEra
If true, buttons to select the era (BCE/CE) are shown on the year selector popup, even if the format
specifier does not include the era. If false, buttons to select the era are NOT shown, even if the
format specifier includes the era. Normally, era buttons are only shown if the format string specifies
the era.

askSecond
If false, buttons for number-of-seconds are not shown on the year selector popup, even if the format
specifier includes seconds. Normally, the buttons are shown if the format string specifies seconds.

baseYear†
the number to add to two-digit years if the "%y" format specifier is used. By default, the MySQL
convention that two-digit years are in the range 1970 to 2069 is used. The most common alternatives
are 1900 and 2000. When using this option, you should also specify the earliest and latest options to
the first and last dates in the century, respectively. Refer to the ajaxOptions example.

dayAbbreviations†
An array of day abbreviations to replace Sun, Mon, etc. Note: if a different first day-of-week is
specified by option firstDOW, this array should nonetheless start with the desired abbreviation for
Sunday.

dayNames†
An array of day names to replace Sunday, Monday, etc. Note: if a different first day-of-week is
specified by option firstDOW, this array should nonetheless start with the desired name for Sunday.

earliest
String or Date object representing the earliest date/time that a user can select. If a String is specified,
it is expected to match the format specifier. For best results if the field is only used to specify a date,
be sure to set the time to 00:00:00. Refer to the ajaxOptions and extending examples.

eraAbbreviations†
An array of era abbreviations to replace BCE and CE. The most common replacements are the
obsolete: BC and AD.

firstDOW
a value from 0 (Sunday) to 6 (Saturday) stating which day should appear at the beginning of the
week. The default is 0 (Sunday). The most common substitution is 1 (Monday). Note: if custom
arrays are specified for dayAbbreviations and dayNames, they should nonetheless begin with the
desired value for Sunday. Refer to the earlier popup examples.

format†
string specifying the date/time format. The following format specifiers are recognized:

specifier meaning
%a Abbreviated weekday name (Sun...Sat)
%B Abbreviation for Before Common Era (if year<1)*
%b Abbreviated month name (Jan...Dec)
%C Abbreviation for Common Era (if year>=1)*
%c Month, numeric (1..12)
%D Day of the month with English suffix (1st, 2nd, ...)
%d Day of the month, numeric (00...31)
%E Era abbreviation*
%e Day of the month, numeric (0...31)
%H Hour (00...23)
%h Hour (01...12)
%I Hour (01...12)
%i Minutes, numeric (00...59)
%k Hour (0...23)
%l Hour (1...12)
%M Month name (January...December)
%m Month, numeric (01...12)
%p AM or PM
%r Time, 12-hour (hh:mm:ss followed by AM or PM)
%S Seconds (00...59)
%s Seconds (00...59)
%T Time, 24-hour (hh:mm:ss)
%W Weekday name (Sunday...Saturday)
%w Day of the week (0=Sunday...6=Saturday)
%Y Year, numeric, four digits (possibly signed)
%y Year, numeric, two digits (possibly signed)
%Z Year, numeric, four digits (no sign)*
%z Year, numeric, variable length (no sign)*
%# Signed UTC offset in minutes*
%+ Signed UTC offset in %h%i format*
%- Signed UTC offset in %l%i format*
%: Signed UTC offset in %h:%i format*
%; Signed UTC offset in %l:%i format*
%@ UTC offset time zone label*
%% A literal % character

The default format is "%Y-%m-%d %T".

* Note: except for those delimited by an asterisk in the table above, these are the same format
specifiers used by the MySQL database DATE_FORMAT() function. The default format is the one
used for MySQL DATETIME and TIMESTAMP data types.

Any other character in the format string appears literally in the value. Any other sequence of percent
sign ("%") followed by a character is reserved for future use, except for the following MySQL
specifiers not implemented due to lack of support in JavaScript: %f (microseconds); %j (day-of-year);
%U, %u, %V and %v (week-of-year); and %X and %x (year-for-week). Do not use format specifiers that
are reserved or not implemented.

Specifiers and literal characters can be combined into more complex formats, such as JSON and
XML.

formatUtcOffset
string specifying the format of the UTC offset choices displayed in the picker. Although all specifiers
used by the format option are recognized, only those pertaining to UTC offsets (namely %#, %+, %-,
%:, %; and %@) should be used. By default, the picker will extrapolate a format by scanning the
format option for appropriate specifiers and their surrounding characters. Refer to the date/time
picker near the beginning of this page for an example.

hideInput
if true, the <input> is "hidden" (the picker appears in its place). This actually sets the border, height,
margin, padding and width of the field as small as possible, so it can still get focus. Refer to the
date/time picker near the beginning of this page for an example. Note: if you try to hide the field
using traditional techniques (such as setting display:none), the picker will not behave correctly.
This option should only be used with placement:"inline"; otherwise, a popup will only appear
(seemingly from nowhere) if the user tabs to the hidden field.

labelDayOfMonth
HTML to replace the Day of Month label

labelDismiss
HTML to replace the dismiss popup button's X label

labelHour
HTML to replace the Hour label. Refer to the earlier popup examples.

labelMinute
HTML to replace the Minute label. Refer to the earlier popup examples.

labelMonth
HTML to replace the Month label

labelSecond
HTML to replace the Second label

labelTimeZone
HTML to replace the Time Zone label

labelTitle
HTML for the title of the picker. If not specified, the picker automatically selects a title based on the
format specifier fields. Refer to the earlier popup examples.

labelYear
HTML to replace the Year label

latest
String or Date object representing the latest date/time that a user can select. If a String is specified, it
is expected to match the format specifier. For best results if the field is only used to specify a date,
be sure to set the time to 23:59:59. Refer to the ajaxOptions and extending examples.

monthAbbreviations†
An array of month abbreviations to replace Jan, Feb, etc. Note: do not use an HTML entity
reference (such as ä) in a month name or abbreviation; embed the actual character (such as ä)
instead. Be careful to save your source files under the correct encoding, or the character may not
display correctly in all browsers; this often happens when a character code from UTF-8 is saved with
ISO-8859-1 encoding (or vice-versa).

monthNames†

An array of month names to replace January, February, etc.
placement

One of the following strings:
"popup"

the picker appears above its input when the input receives focus, and disappears when it is
dismissed. This is the default behavior.

"inline"
the picker follows the <input> and remains visible at all times. When choosing this placement,
you might prefer to hide the input field using the hideInput option (the correct value will still
be submitted with the form). Refer to the date/time picker near the beginning of this page for
an example.

† denotes options supported by AnyTime.Converter.

Time zone determination is extremely complicated, and ECMA-262 (the JavaScript standard) provides very
little native support. Although Any+Time™ is a significant improvement, some features may require additional
modification to meet your needs.

Default Functionality

By default, AnyTime.Converter and any date/time picker created by Any+Time™ can parse and/or format
offsets from Coordinated Universal Time (UTC) as minutes (%#) or hours-and-minutes (%+, %-, %: and %;).

UTC offsets can also be represented as time zone labels using the %@ specifier. By default, this uses the format
"UTC±%h:%m", where "UTC" and ":" are literal characters, "±" is either a plus or minus sign (for before or after
UTC), "%h" is the two-digit offset full-hours and "%m" is the two-digit offset remaining-minutes. For example,
"UTC+05:30" represents five (5) hours and thirty (30) minutes ahead of Coordinated Universal Time.

Offset Selection and Time Zone Labels

If it is necessary to change the UTC offset using a date/time picker, or a list of locale-specific, human-friendly
time zone labels are needed, then a member named AnyTime.utcLabel must be added to the library. This can
easily be accomplished by including the anytimetz.js file and modifying it as needed, usually by removing
unwanted UTC offsets and/or altering the labels provided.

AnyTime.utcLabel is an Array of Arrays. The primary array is indexed by available UTC offsets in minutes (not
hours-and-minutes). Plus-sign (+) must not be used for positive minutes. Each sub-array contains one or more
Strings; each String is a label for a possible time zone corresponding to the UTC offset. For example, the file
includes the definition:

AnyTime.utcLabel[330]=[
 'IST--Indian Standard Time'
 ,'SLT--Sri Lanka Time'
];

which means that "IST--Indian Standard Time" and "SLT--Sri Lanka Time" are the two possible labels
for 330 minutes (or 5 hours, 30 minutes) before UTC. The first label in a sub-array is the default label for that
UTC offset, so IST will always be selected when formatUtcOffset contains the %@ specifier but format does not.

Any label can be altered as desired (for example, you may want to show only abbreviations, or only long
names). Any unwanted label can be removed from the sub-array. The sub-array for any unwanted UTC offset
can be eliminated entirely, in which case the offset will not be offered by the picker. This can be useful, for
example, if you only want to allow time zones for a limited geographic area (such as a single nation or
continent).

Offset Conversion

Normally, AnyTime.Converter assumes local time when it parses a String or formats a Date. Conversion
between local time and other UTC offsets is possible using two options:

utcFormatOffsetImposed
offset from UTC, in minutes, to specify when formatting a Date object. This can be used to convert
a local time to a different UTC offset. Refer to the example in the next section.

utcParseOffsetAssumed
offset from UTC, in minutes, to assume when parsing a String object. This can be used to convert a
String created in a different UTC offset to local time. Note: if the format string contains a UTC offset
specifier (%#, %+, %-, %:, %; or %@), then the UTC offset specified in the String is used instead of
utcParseOffsetAssumed.

Explanations of more obscure options for UTC offset manipulation appear in the source file.

Limitations

Unlike days and months, there are not separate labels for time zone abbreviations and long names. anytimetz.js
can be modified to contain only one or the other, but the library does not provide the ability to select between
abbreviations or long names using different format specifiers, in part because many abbreviations are
ambiguous. Separate labels might be added to a future version, but no such work is currently underway.

There is no automatic detection of daylight savings time (AKA summer time), due to lack of support in
JavaScript and the time-prohibitive complexity of attempting such support in code (alternate time zones are
inconsistent from location-to-location and year-to-year, and relevant time zone data is updated many times per
year)! If you are concerned that users will not know whether to select Standard or Daylight/Summer Time for a
particular date, you can eliminate the Daylight/Summer members from the array, and remove the word
"Standard" from the Standard labels. For example, instead of:

AnyTime.utcLabel[-300]=[
 'EST--Eastern Standard Time (North America)'];
AnyTime.utcLabel[-240]=[
 'EDT--Eastern Daylight Time (North America)'];

modify the array to contain:

AnyTime.utcLabel[-300]=[
 'Eastern Time (North America)'];

and only use the label (%@) specifier (do not use %#, %+, %-, %: or %; because the UTC offset will be
misrepresented). This is an effective solution for most cases, which do not require conversion between local
time and different time zones.

AnyTime.Converter can be used independently. The following example converts a string in the default
date/time format into a Date object, then converts the Date into a JSON string (with distinct members) and an
XML string (using the XML Schema dateTime data type and Coordinated Universal Time):

var defaultConv = new AnyTime.Converter();
var date = defaultConv.parse("1990-01-06 15:30:00");

var jsonConv = new AnyTime.Converter({format:
 '{"year":"%Y","month":"%m","day":"%d","hour":"%H","minute":"%i","second":"%s"}'});

var xmlConv = new AnyTime.Converter({utcFormatOffsetImposed: 0,
 format:"<"+"date>%Y-%m-%dT%H:%i:%s%:<"+"/date>"});

alert("JSON:\n" + jsonConv.format(date) + "\n\nXML:\n" + xmlConv.format(date));

AnyTime.Converter accepts the following options, which are the same as for AnyTime.picker() and
jQuery.AnyTime_picker(): baseYear, dayAbbreviations, dayNames, eraAbbreviations, format,
monthAbbreviations and monthNames.

AnyTime.Converter supports all of the same format field specifiers as AnyTime.picker() and
jQuery.AnyTime_picker().

Check the JavaScript source code for additional details and instructions.

In the following example, AnyTime.Converter and jQuery work together to provide date-range selection. The
value for the second ("Finish") field must be at least one day after the date in the first ("Start") field (thanks to
the earliest option), but no more than 90 days later (thanks to the latest option). This example also demonstrates
a button that sets the first field to the current date, a button to clear the fields, and calendar pseudo-buttons
using CSS background properties.

<style type="text/css">
 #rangeDemoStart, #rangeDemoFinish {
 background-image:url("calendar.png");
 background-position:right center;
 background-repeat:no-repeat; }
</style>
Start: <input type="text" id="rangeDemoStart" size="14" />
Finish: <input type="text" id="rangeDemoFinish" size="14" disabled="disabled"/>
<input type="button" id="rangeDemoToday" value="today" />
<input type="button" id="rangeDemoClear" value="clear" />
<script type="text/javascript">
 var oneDay = 24*60*60*1000;
 var rangeDemoFormat = "%e-%b-%Y";
 var rangeDemoConv = new AnyTime.Converter({format:rangeDemoFormat});
 $("#rangeDemoToday").click(function(e) {

 $("#rangeDemoStart").val(rangeDemoConv.format(new Date())).change(); });
 $("#rangeDemoClear").click(function(e) {
 $("#rangeDemoStart").val("").change(); });
 $("#rangeDemoStart").AnyTime_picker({format:rangeDemoFormat});
 $("#rangeDemoStart").change(function(e) { try {
 var fromDay = rangeDemoConv.parse($("#rangeDemoStart").val()).getTime();
 var dayLater = new Date(fromDay+oneDay);
 dayLater.setHours(0,0,0,0);
 var ninetyDaysLater = new Date(fromDay+(90*oneDay));
 ninetyDaysLater.setHours(23,59,59,999);
 $("#rangeDemoFinish").
 AnyTime_noPicker().
 removeAttr("disabled").
 val(rangeDemoConv.format(dayLater)).
 AnyTime_picker(
 { earliest: dayLater,
 format: rangeDemoFormat,
 latest: ninetyDaysLater
 });
 } catch(e){ $("#rangeDemoFinish").val("").attr("disabled","disabled"); } });
</script>

Start: Finish:

A few people have requested the ability to type a value directly into the <input> field. Such behavior would be
detrimental: not only does the picker make it easy to select the appropriate date/time, it also protects the user
from entering a value in the wrong format! In addition, navigation keys (such as arrows) are used by the picker
to select values, and would behave inappropriately for data entry. Therefore, although it is possible to hack the
picker to permit typing in the field (simply remove the call to event.preventDefault() at the end of the key
method), doing so is not recommended! Note: in most browsers, it is possible to paste a value into the input
using CTRL-V; if the pasted value is not in the proper format, the current time is used (subject to any range
limits).

Following are some of the most common issues, and how to avoid or solve them. Even if you do not experience
any problems, these are good rules to follow!

Display/Layout Issues

Most display/layout problems can be avoided by keeping the browser out of quirks mode. Common symptoms
include groups of buttons appearing in the wrong location, especially in older versions of IE. For best results, be
sure to include an appropriate <!DOCTYPE> declaration as the first line of your HTML page; for example:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

Any legitimate HTML or XHTML <!DOCTYPE> can be used, as long as it is appropriate for the source file.

Note that an <input> field must be visible when its picker is created, in order to calculate the correct size and
location (if the field is hidden, the picker might be too small to contain all of its buttons). To create a picker for a

field that is initially hidden (for example, because it is on a collapsed accordian panel or "minimized" popup
overlay), wait until the first time the field is made visible before calling AnyTime.picker() or
$.AnyTime_picker(). For example, you can attach an initial focus() handler to the field that instantiates the
picker:

<input id="HiddenFieldDemo">
<script type="text/javascript">
 $('#HiddenFieldDemo').focus(function() {
 $('#HiddenFieldDemo').unbind('focus').AnyTime_picker(); });
</script>

When using a jQuery UI theme, be sure to include the Any+Time™ library stylesheet also. For best results,
include the library stylesheet before the theme stylesheet. If you add the theme styles to the library stylesheet,
place them at the end of the stylesheet for best results.

Also be aware that many jQueryUI themes use a background image for the ui-widget-content class that is
shorter than a typical picker, causing the widget to have a "two-tone" background. If you do not like the
appearance, modify the property set in the "Component containers" section of your theme stylesheet to:

choose a different background color that blends more smoothly with the top of the image;
remove the background url("…") property for a solid background color;
make the background repeat in both directions; or
substitute a taller image.

Minor variations in Microsoft Internet Explorer 6 and 7 are to be expected due to their broken box model, but
nothing should appear too out-of-the-ordinary.

Some display problems are related to initialization conflicts with other libraries, especially .NET. These can be
resolved using the setTimeout() function to delay picker creation until other initializations are finished; for
example:

setTimeout(function() { AnyTime.picker("field1"); }, 1000);

In some cases, it may be necessary to increase the timeout or use more complicated techniques, such as waiting
to create the picker when the field first receives focus (as previously shown).

Be careful to place all <link rel="stylesheet"> and <style> elements before <script> elements, or
WebKit-based browsers (Apple Safari and Google Chrome) might not format the picker correctly (symptoms
include extremely-tall pickers and misplaced time buttons).

All names, IDs and classes in HTML, JavaScript and CSS created by Any+Time™ contain the phrase
"AnyTime". To avoid problems related to naming conflicts, do not use this sequence of characters in any
variables, elements or class names.

Behavior Issues

If the picker does not appear at all, be sure you are trying create it after the text field has been added to the
page, either by placing your <script> element after the <input> element, or using jQuery's
$(document).ready() function.

Every <input> field for which a picker is to be created must have a unique id attribute, even if the picker is
created by passing a non-ID selector to jQuery.AnyTime_picker(). An exception might be thrown if the ID is

missing.

Use AnyTime.picker() instead of jQuery.AnyTime_picker() if the ID for a field contains characters that are
misinterpreted by jQuery. For example, JSF (Java Server Faces) has been known to use the colon (":")
character in generated IDs, which is used by jQuery for pseudo-selectors.

If a picker shows today's date/time instead of the value in the associated <input> field, check that the format of
the value matches the format specifier exactly. The value cannot be interpreted if it does not match perfectly!

Do not use an HTML entity reference (such as ä) in a string passed to the monthAbbreviations option;
embed the actual character (such as ä) instead. Be careful to save your source files under the correct encoding,
or the character may not display correctly in all browsers; this often happens when a character code from
UTF-8 is saved with ISO-8859-1 encoding (or vice-versa).

When using placement:"inline", XHTML and a day-of-the-month format specifier ("%D", "%d" or "%e"), the
<input> may only appear where a <table> element is permitted (for example, NOT within a <p> element). This
is because the picker uses a <table> element to arrange the day-of-the-month (calendar) buttons. Failure to
follow this advice may result in a JScript "unknown error" from Internet Explorer.

When specifying the earliest and/or latest option, be certain to include a time value, even if the user is only able
to select the date. The time for an "earliest" date should be 00:00:00, and the time for a "latest" date should be
23:59:59 (refer to the ajaxOptions example). This is because the Date objects used by the picker reflect exact
moments in time, regardless of which fields are specified by the format. Failure to set the time could result in
incorrect enforcement if, for example, the page is loaded at 23:59 one day, but the field not changed until 00:01
the day after!

Only use the hideInput option to hide the <input> associated with a picker. Traditional techniques (such as
setting display:none) will cause the picker to behave incorrectly.

Some older versions of jQuery are incompatible with Any+Time™. JavaScript errors, often involving null or
undefined objects, may result. After installing an updated version of jQuery, be sure to clear the browser cache
so the new version is loaded.

All names, IDs and classes in HTML, JavaScript and CSS created by Any+Time™ contain the phrase
"AnyTime". To avoid problems related to naming conflicts, do not use this sequence of characters in any
variables, elements or class names.

Validation Issues

It should go without saying that Any+Time™ only works in browsers with JavaScript enabled. Any server-side
form processing should validate every value it receives, in case JavaScript was disabled or otherwise unavailable
when the form was submitted.

Remember that two-digit years ("%y") are susceptible to the Y2K problem! For best results, use four-digit or
variable-length years ("%Y", "%Z" or "%z") instead. The baseYear option can also be helpful in situations where
"%y" is required. When using baseYear, you should also specify the earliest and latest options to the first and
last dates in the century, respectively.

Other Issues

To reduce memory leaks, always call AnyTime.noPicker() (or the .AnyTime_noPicker() extension to jQuery) to

remove the date/time picker from an <input> field before removing the field, for example:

AnyTime.noPicker("field1");
$("#field1").remove();
$("#field2").AnyTime_noPicker().remove();

This is especially necessary before adding a picker to a field with the same ID as a previously-removed field that
also had a picker, because Any+Time™ will not create more than one picker per ID.

The JavaScript source files include an intrusive alert() call on the last line, to discourage hot-linking to this
server. When you download a source file, be sure to remove the last line to eliminate annoying messages when
your HTML page is loaded!

Any+Time™ follows WIA-ARIA Authoring Practices 1.0 for Date Picker keyboard interaction as closely as
possible, to maximize accessibility without a mouse. However, if a user reports difficulty changing a date/time
value using the picker (for example, due to problems with a "screen reader" or other assistive technology), ask
them to disable JavaScript and carefully type the value into the input field. Again, be sure to validate the input
when it is received by the server.

If you experience any other problems, please contact the author.

Any+Time™ provides the following public objects and methods. Check the source code for additional methods
that are not intended for general use, but potentially-helpful to more advanced web developers.

(Object) new AnyTime.Converter(Object options)
Creates an object for parsing Strings into Dates and formatting Dates as Strings, using the specified
options.

(String) AnyTime.Converter.format(Date date)
Returns a String representing the specified Date.

(Date) AnyTime.Converter.parse(String string)
Returns a Date represented by the specifed string.

(void) AnyTime.noPicker(String input_id)
Removes the picker associated with the <input> having the specified ID, and cleans up the memory used
by the widget.

(void) AnyTime.picker(String input_id, Object options)
Creates a date and/or time picker for the <input> having the specified ID, according to the specified
options.

(jQuery) jQuery.AnyTime_noPicker()
Removes the pickers associated with each of the elements selected by jQuery. Refer to the extending
example.

(jQuery) jQuery.AnyTime_picker(Object options)
Creates a date and/or time picker for each of the elements selected by jQuery according to the specified
options.

If you find Any+Time™ useful, please tell your colleagues and promote the library in your favorite forums,
blogs and other social networks!

Both positive feedback and constructive criticism are also appreciated (please contact the author).

Copyright 2010 AJAX, JSON and XML Consulting and Training by Andrew M. Andrews III (SM). All Rights
Reserved. "Andrew M. Andrews III", "AMA3", Andrew_M_Andrews_III, Any+Time and the Tre Design are
trademarks and/or service marks of Andrew M. Andrews III. Use this site at your own risk. Use of this site for
illegal or malicious purposes is prohibited.

