

iDEAL Advanced

ING Wholesale Banking

PHP integration manual - iDEAL
advanced

Version 2.2, September 2009

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 2 of 24

Contents

Contents ..2

1 Introduction...4

1.1 Overview ..4

1.2 Obligations ..4

1.3 Further questions? ..5

1.4 Definitions ..5

2 Security..6

3 Requirements..8

3.1 Required software ..8

3.2 Required settings ..9

3.3 General configuration ...10

3.4 Acquirer’s certificate ...11

3.5 Acceptor’s certificate and key pair..11

4 Development ...13

4.1 Directory request (GetIssuerList)..13

4.2 Transaction request (RequestTransaction) ..15

4.3 Status request (RequestTransactionStatus)...17

4.4 Error handling ..20

4.5 Proxy servers ..21

5 Testing ...22

5.1 Mandatory tests ..22

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 3 of 24

6 Deployment ...23

6.1 Hosting under own management..23

6.2 Hosting at an external provider...23

APPENDIX A: Data catalogue ..24

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 4 of 24

1 Introduction

This document is intended for developers who are responsible for integrating iDEAL Advanced
into an online shop using the PHP development platform.

1.1 Overview

This document describes the following steps required for the integration process:

• Chapter 1, Introduction and overview

• Chapter 2, Security, gives details of the security aspects of your online shop.

• Chapter 3, Requirements, describes the prerequisites and necessary prior steps (such as
generating a key pair for the owner of the online shop).

• Chapter 4, Development, describes the functions of iDEAL Advanced PHP, and how these
should be integrated into the online shop.

• Chapter 5, Testing, describes the mandatory tests that have to be carried out before the online
shop goes online.

• Chapter 6, Deployment, describes some aspects of the online shop going online.

NB: For general information about iDEAL Advanced, please refer to the document ‘iDEAL
General information’. For integration using a different iDEAL Advanced development platform,
please refer to the integration manuals for .NET or Java.

1.2 Obligations

You are urgently recommended to read this whole document together with the introductory
document ‘iDEAL General information’ before integrating iDEAL Advanced into an online shop.
We request you to pay special attention to the following responsibilities of the acceptor:

- Security: Every iDEAL acceptor is personally responsible for the secure design of his or her
own online shop. The software supplied by ING, including the iDEAL Advanced PHP
Connector, is built on the basis of all usual security best practices. Improper integration may,
however, nevertheless lead to an insecure online shop. This integration manual contains a
separate chapter (Chapter 2) on security aspects. The other chapters contain additional
practical instructions relating to the security aspects of your online shop. These passages are
generally indicated by the padlock symbol ().

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 5 of 24

- Obligation of proactivity: Every iDEAL acceptor must comply with the so-called ‘obligation of
proactivity’. This obligation means that you yourself are responsible for obtaining the status of
a transaction before you make a delivery. For more information about the ‘obligation of
proactivity’, see section 4.3.1.

- Presentation: Tools for the presentation of iDEAL on your website can be obtained from the
merchant part of http://www.ideal.nl, like iDEAL logos and banners.

- Testing: After the integration of iDEAL into your online shop, you are obliged to carry out a
number of tests, which are described in Chapter 5 of this document.

- Example codes: In a number of chapters in this document, example codes are given for the
integration of iDEAL Advanced into your system. These codes are solely for the purpose of
illustration. The content of the codes to be actually used by the iDEAL acceptor should be set
by the iDEAL acceptor him- or herself. ING Bank N.V. will not be liable for damage of any
kind whatsoever that may be suffered by the iDEAL acceptor in connection with or as a
consequence of the use of the example codes. The iDEAL acceptor must indemnify ING Bank
N.V. against possible claims of third parties for the compensation of damages in connection
with or as a consequence of the use of the example codes by the iDEAL acceptor.

1.3 Further questions?

- Questions: You can contact the iDEAL service desk if you have any questions or comments.
Our service desk can be contacted between 9.00 am and 5.00 pm at ideal@ing.nl or on +31
(0)20-6522570. You can also submit a service ticket via the iDEAL Dashboard. The iDEAL
Dashboard also has a FAQ section.

- Illustration code:The download for iDEAL Advanced PHP (available from the iDEAL
Dashboard: https://ideal.secure-ing.com) also contains illustration code. This allows all
functions of the iDEAL Advanced PHP Connector to be simulated in plain form. This
illustration code is explicitly not intended as a basis for a complete online shop, but serves for
the purpose of illustration only.

1.4 Definitions

The iDEAL system is based on bilateral relationships within the so-called ‘4-party’ model. The 4
parties involved in the model are as follows:

- The acceptor: the owner of the online shop

- The acquirer: the acceptor’s bank (ING)

- The consumer: the customer who wants to buy a product from the acceptor’s online shop

- The issuer: the consumer’s bank

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 6 of 24

2 Security

This chapter further details the security aspects of your online shop. The remaining chapters of
this integration manual contain a number of practical security instructions, indicated by the padlock
symbol ().

This document in no way claims to give complete instructions for the security of your online shop.
That is impossible in view of the scope and complexity of the subject. The aim of this chapter and
of the instructions included elsewhere is, in particular, to make you aware of the subject.

There is a wealth of documentation available in books and on the Internet about the threats to
which web applications are or may be exposed, and the preventive and detective measures to be
taken to protect your own online shop from them. We urgently advise you to examine this
documentation. The success of your online shop depends on it to a great extent. The software for
iDEAL Advanced PHP supplied by ING is built on the basis of all usual security best practices.
Incorrect integration of this software in your online shop, and/or the insecure setup of other parts
of your online shop, may nevertheless result in an insecure online shop.

Security as part of the process

The first step in preventing this is to realize that security affects all stages of the process of your
online shop’s development:

• Analysis & design: Even during the design of your online shop, you should find out about the
threats relevant to your online shop and formulate measures to counter them.

• Development: Some code is insecure by definition. A lot of the available security
documentation contains explicit examples of insecure code, including the recommended
replacement of such code. Take account of this information when building your online shop.

• Testing: Identified threats, and the associated countermeasures, naturally have to be tested.
There are many different techniques and tools available for this, which vary per development
platform.

• Deployment: Make sure when deploying your online shop that crucial files are not accessible
to unauthorized persons. Think, for example, about the configuration of your online shop, your
private key and your database. Pay particularly close attention to this if you are not hosting
your online shop yourself.

OWASP

The second step towards a (more) secure online shop is to examine the documentation on the
security aspects of web applications mentioned above. A good starting point here is the Open
Web Application Security Project (OWASP) website, which is to be found at www.owasp.org. The
OWASP site offers a wealth of insights into the vulnerabilities of software and the
countermeasures to be taken.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 7 of 24

According to OWASP, there are more than 300 security issues that (may) affect the security of
web applications. OWASP periodically compiles a top 10 of the most frequently occurring
vulnerabilities of web applications. The latest version is the top 10 for 2007 1.

OWASP also regularly provides new versions of a number of interesting documents. The most
important of these are:

• The OWASP Guide: Describes in detail how web applications and web services can be
made more secure. This is illustrated by examples in J2EE, ASP.NET and PHP. 2

• The OWASP Testing Guide: Gives a detailed description of a test program aimed at
security. 3

• The OWASP AppSec FAQ: A list of frequently asked questions about vulnerabilities and
measures that can be taken. 4

The OWASP site also contains specific pages on various development platforms, including PHP 5.
These pages deal in detail with platform-specific security issues, including insecure code and
security measures.

 NB: In the context of OWASP, think about the following points (among others):

• Check ALL input, whatever the source (acquirer, consumer).

• It is better to check on permitted values (white listing) than on forbidden values (black listing).

• Protect your database, by measures including not leaving your database connection open
unnecessarily.

• Protect your private data (such as keys) by not storing them at locations that are accessible to
unauthorized persons.

• Never send user names and passwords unencrypted.

1 To be found at http://www.owasp.org/index.php/Top_10_2007.

2 See http://www.owasp.org/index.php/Category:OWASP_Guide_Project.

3 See http://www.owasp.org/index.php/Category:OWASP_Testing_Project.

4 See http://www.owasp.org/index.php/OWASP_AppSec_FAQ.

5 See http://www.owasp.org/index.php/Category: PHP.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 8 of 24

3 Requirements

This chapter describes the software, settings and configuration that are required for the successful
integration of iDEAL Advanced into the acceptor’s system using PHP as the development
platform.

3.1 Required software

To integrate iDEAL Advanced PHP successfully into an online shop according to the mode of
operation described in this document requires the following software:

For development and configuration purposes:

- A development environment for PHP, for example Eclipse for PHP. Other options are Adobe
Dreamweaver or Zend Studio. The choice depends on the user's/developer's preferences.

- PHP from version 5 upwards.

- To generate your own certificate/key pair:

o OpenSSL implementation for Windows, to be found at
http://www.slproweb.com/products/Win32OpenSSL.html. For OpenSSL in
general, see also www.openssl.org. Section 3.5 of this document describes the
steps required to make your own certificate/key pair.

o OpenSSL implementation for Linux, to be found at
http://www.devside.net/guides/linux/openssl with information about the installation
of OpenSSL under Linux. Section 3.5 of this document describes the steps
required to make your own certificate/key pair.

- The iDEAL Advanced PHP Connector, available from the iDEAL Dashboard as part of the
iDEAL Advanced Integration PHP package, to be found under the menu option Documentatie
(Documentation).

In a Microsoft Windows test and production environment:

- Apache with SSL, for further information about Apache and PHP under Windows see for
example http://www.html-site.nl/apache_php_mysql.php

- or IIS with PHP support, see for example http://nl3.php.net/install.windows

- The acceptor’s own PKCS#12 certificate (including his or her own private/public key pair).
Section 3.5 of this document describes the necessary steps for generating this.

- The iDEAL Acquiring platform certificate (iDEAL.cer). Available from the iDEAL Dashboard.
See section 3.4 for details.

- The iDEAL Advanced PHP Connector. Available through the iDEAL Dashboard, as part of the
iDEAL Advanced Integration PHP package, to be found under the menu option Documentatie
(Documentation).

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 9 of 24

In a Linux test and production environment:

- Apache with SSL, for further information about Apache and PHP under Linux see for example
http://dan.drydog.com/apache2php.html

- The acceptor’s own PKCS#12 certificate (including his or her own private/public key pair).
Section 3.5 of this document describes the necessary steps for generating this.

- The iDEAL Acquiring platform certificate (iDEAL.cer). Available from the iDEAL Dashboard.
See section 3.4 for details.

- The iDEAL Advanced PHP Connector. Available from the iDEAL Dashboard as part of the
iDEAL Advanced Integration PHP package, to be found under the menu option Documentatie
(Documentation).

3.2 Required settings

- Internet traffic via port 443 (SSL): It must be possible to make an SSL connection to the
acquirer’s iDEAL server from the web server (where the online shop is located). These
connections run via port 443.

- Access to a directory with specific read and write rights during the installation of the
certificates on the web server.

- Security measures: PHP must be configured correctly as follows:

o REGISTER_GLOBALS: You are urgently recommended to switch this option OFF. If
this option is on, users can influence the application. If REGISTER_GLOBALS is on,
variables can be entered directly from the browser’s address bar. This makes it easier
for malicious persons to misuse the system. See also
http://www.php.net/manual/nl/security.globals.php.

o OPEN_BASEDIR: With this option, you can indicate the folders to which PHP has
access. Use this setting to give minimal protection to folders with your configuration
and your keys. See also http://nl2.php.net/manual/en/features.safe-
mode.php#ini.open-basedir

o SAFE_MODE: If this option is on, a check is made as to whether the permissions for
the file system correspond to the user who is trying to change/open the file system. If
SAFE_MODE is on, this therefore implies that PHP can only process/open files for
which it has actually received permission. You are strongly advised to set this option
to ON, even if it means that you have to implement certain functions of your online
shop differently. See also http://nl2.php.net/manual/en/features.safe-mode.php

o DISPLAY_ERRORS: This option determines whether error messages should be
displayed. If this option is set to OFF, only a white page is displayed when an error
occurs. You are strongly advised to set this option to OFF, even if it means that you
have to implement certain functions of your online shop differently to ensure that no
valuable information is given away. See also http://nl2.php.net/errorfunc

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 10 of 24

o ERROR_REPORTING: This option determines whether and to what extent warnings
are displayed when an error occurs. You are strongly advised to set this option to
OFF, even if it means that you have to implement certain functions of your online
shop differently to ensure that no valuable information is given away. See also
http://nl2.php.net/errorfunc

o EXPOSE_PHP: This option determines whether PHP can indicate that it is installed
on a web server. When it is on, for example, the PHP signature is added to the web
server’s http header. You are urgently advised to set this option to OFF in the
production environment. See also http://nl3.php.net/ini.core

3.3 General configuration
The following parameters have to be configured in the config.conf file:

- MerchantID: the ID of the online shop, received by the acceptor during the registration
process

- SubID: subID of the online shop, default value = 0 (zero); only to be changed in consultation
with the acquirer

- MerchantReturnURL: URL of the page in the online shop to which the consumer is
redirected after an iDEAL transaction. This value can be overruled as necessary in the online
shop implementation (see section 4.2.2).

- AcquirerURL: URL of the acceptor’s acquirer; the following prescribed values apply to ING:

• Test environment: https://idealtest.secure-ing.com/ideal/iDeal

• Production environment: https://ideal.secure-ing.com/ideal/iDeal

- AcquirerTimeout: number of seconds (default = 10) of waiting time for a response from the
iDEAL services. If no response is received during that time, an exception is displayed.

- Privatecert: name of the acceptor’s organization as given during the creation of his or her
own certificate. See section 3.5 for more information about the acceptor’s certificate.

The settings in the config.conf file may, for example, appear as follows:

Privatekey=priv.pem
PrivatekeyPass=passwd
Privatecert=cert.cer
Certificate0=webserver.crt
AcquirerURL=ssl://ideal.secure-ing.com:443/ideal/iDeal
AcquirerTimeout=10
MerchantID=005012345
SubID=0
MerchantReturnURL=http://[yourwebpage]/StatReq.php
ExpirationPeriod=PT10M
LogFile=<path-to>/Connector.log
TraceLevel = DEBUG,ERROR

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 11 of 24

The following needs to be updated in the iDEALConnector_config.inc.php file:

- define("SECURE_PATH", "%PATH%");

Here in place of %PATH% the entire path has to be given to the folder containing the
config.conf file and the private keys and certificates.

 NB: Never put the configuration file, encryption keys and other sensitive information in the web
server’s document root (www or www-root). At that location, undesirable visitors can access your data
very easily.

 NB: NEVER activate tracing in the production environment. This can cause both performance
and security problems!

3.4 Acquirer’s certificate
iDEAL Advanced is supplied with a certificate from the iDEAL Acquiring system: ideal.cer. This
certificate contains the public key of the iDEAL Acquiring platform, with which it is possible to
check that all messages are genuinely being sent by the ING iDEAL Acquiring platform.

The following steps have to be taken to install the certificate from the iDEAL Acquiring platform on
the acceptor’s system:

1. Copy the certificate file to a defined folder outside the web root.

2. Give only the web server’s user account rights to this certificate; this account only requires
read rights.

NB: Do NOT place your certificate in the web root. The web root is easy for unauthorized persons to
access.

NB: This certificate serves only as a medium for the public key. It therefore does not matter if the
status according to the certificate details is Ongeldig (Invalid).

3.5 Acceptor’s certificate and key pair

The following steps have to be carried out in order to generate and activate the acceptor’s own
certificate and key pair:

1. Generate an RSA private key with the following command (use a self chosen password for
the field ownPassword):
openssl genrsa –des3 –out priv.pem –passout pass:ownPassword 1024

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 12 of 24

2. The result of this is the priv.pem file. PEM files are intended for the storage of the private
key and the public key. The file is saved as the default in the bin directory under the
OpenSSL directory.

 NB: Take into account the fact that the password given here is also needed to install the certificate in
the ultimate hosting environment. This may not be the acceptor’s own environment, but that of an
external hosting provider. Therefore, do not use a password that the acceptor uses for other business
or private purposes.

 NB: Always use a strong password, because with this certificate a malicious person can pretend to
be you vis-à-vis the acquiring platform.

3. Generate a certificate on the basis of the RSA private key (use the same password for the

field ownPassword as in step 2):
openssl req –x509 –new –key priv.pem –passin pass:ownPassword –days
3650 –out cert.cer

This command leads to a series of questions about the requestor. Enter the correct values.
This relates among other things to the organization name. You need this organization name
in some subsequent steps.

The result is the cert.cer file. CER files contain the certificate and the public key. The file
is saved as the default in the bin directory under the OpenSSL directory.

4. Copy the private key and the certificate to the same defined folder as the configuration file
(see section 3.3).

5. Configure the following parameters in the config.conf file; replace the value for
PrivatekeyPass in ownPassword that you also used in step 2:

Privatekey=priv.pem
PrivatekeyPass=ownPassword
Privatecert=cert.cer

6. Upload cert.cer to the test environment of the iDEAL Acquiring platform (via the iDEAL
Dashboard).

7. After positive verification by the iDEAL Service Desk (see Chapter ‘Registration process’ of
the ‘iDEAL General information’ document): Upload cert.cer to the production environment
of the iDEAL Acquiring platform (via the iDEAL Dashboard).

 NB: The priv.pem, cert.cer and config.conf files created contain secret information (the private
key and configuration data). Make sure that these files are not accessible to others, and that they
are therefore not in the web root of the web server (the www-root or www folder).

Recommendation: In order for you to distinguish clearly between the iDEAL production and test
environments, it is recommended to create a separate *.cer and *.p12 file for both environments.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 13 of 24

4 Development

This chapter describes in detail how the iDEAL protocols can be integrated into an online shop.
The following protocols are used within iDEAL:

- Directory protocol: Provides the list of issuers who are members of iDEAL. The consumer
(online shop customer) chooses his or her own bank from these. The iDEAL Advanced PHP
Connector supports this protocol through the function GetIssuerList.

- Payment protocol: Launches and executes a transaction in which money is transferred by
the issuer selected by the consumer to the acceptor’s acquirer. The iDEAL Advanced PHP
Connector supports this protocol through the function RequestTransaction.

- Query protocol: Requests the status of a transaction. On this topic, see for example the
section on the obligation of proactivity (4.3.1). The iDEAL Advanced PHP Connector supports
this protocol through the function RequestTransactionStatus.

- Error protocol: Guidelines for processing error situations (on this topic, see also section 2.5
of the iDEAL Reference Guide). The iDEAL Advanced PHP Connector supports this protocol
implicitly: every error situation is dealt with through an exception; in the case of iDEAL errors
this is an IDealException. Every IDealException contains, among other things, all
iDEAL ErrorRes information, including the consumerMessage.

NB: If there is a proxy server active between the online shop and the acquirer, special measures have
to be taken. See section 4.5 on this topic.

4.1 Directory request (GetIssuerList)
The directory request, implemented in the iDEAL Advanced Connector through GetIssuerList,
ensures that the most recent list of member issuers (consumer banks) is provided. The pick list of
banks in the online shop should be populated on the basis of this list. The consumer then selects
his or her bank from it.

Input

Invoking GetIssuerList does not require any parameters.

Result

Invoking GetIssuerList can produce two results:

• If no error occurs, a DirectoryResponse object consisting of the following elements is
returned:

o IssuerShortList: the short list of issuers with the largest market share.

o IssuerLongList: the long list with the other issuers.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 14 of 24

Section 4.3.1 of the Reference Guide describes in detail how the issuers should be displayed
to the consumer.

• If an error does occur, a different message is returned. For further details see section 4.4.

The example code for invoking GetIssuerList may, for example, be as follows:

 $response = $iDEALConnector>GetIssuerList();

 if (! $response) {

 $errorCode = $response->getErrorCode();

 $errorMsg = $response->getErrorMessage();

 $consumerMessage = $response->getConsumerMessage();

 } else {

 $IssuerList =& $response->getIssuerFullList();

 }

Periodic invocation

In practice, the list of issuers rarely changes. It is therefore not necessary to re-invoke the
GetIssuerList function for every transaction. Instead, the result can be periodically invoked,
and cached or saved between times. It is advised always to check the list for validity daily and to
refresh it if necessary. The DateTimeStamp attribute can be used to check whether the list has
been updated.

The example code for this may, for example, look as follows if the issuer list has been logged in
between times in the online shop database:

 DateTime dirDateTime; // datetime stamp of GetIssuerList

 DateTime dbDateTime; // datetime stamp in own database

 // Add: invoke GetIssuerList(), see previous example

 $dirDateTime = $IssuerList->getDirectoryDateTimeStamp();

 $dbDateTime = // invoke own function to request dbDateTime

 if ($dirDateTime > $dbDateTime)

 {

 // Add: function to save new list

 // in own database

 }

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 15 of 24

If the issuer list changes at the acquirer, it is advisable to update the list in the online shop
accordingly as soon as possible. It is therefore advised to build a function into the online shop with
which the acceptor can do this any time he or she wants.

Considering the number of directory requests:

• Maximum of once per 24 hour period;

• Do not perform directory requests prior to each transaction.

NB: Section 2.2.1 of the Reference Guide provides an overview of possible errors that may occur if the
issuer list in the online shop no longer corresponds to the actual list.

4.2 Transaction request (RequestTransaction)

You initiate an iDEAL transaction with the transaction request, implemented through
RequestTransaction. All data required for this are firstly derived from the parameters you have
provided and secondly obtained by the connector from the configuration data.

Input

Invoking RequestTransaction requires a minimum of 5 parameters:

• IssuerId: the ID of the issuer the consumer has selected from the pick list

• PurchaseId: the purchase number according to the online shop’s system

• Amount: the amount in whole cents (no decimals; 1 Euro = 100)

• Description: the description of the product

• EntranceCode: a code determined by the online shop with which the purchase can be
authenticated upon redirection to the online shop (see section 4.2.2 for details).

• (optional) ExpirationPeriod: if different from the configured value.

• (optional) MerchantReturnURL: if different from the configured value.

NB: In the iDEAL test environment, the result of transactions is determined by the value of the tendered
amount. Use, for example, amount=100 to simulate a successful transaction. See section 5.1 for
details.

NB: The appendix "Character Set for Interbank Exchanges" in the Reference Guide contains a table of
permitted characters. Other characters, such as diacritical marks, are not permitted. If a character is
used in properties of the Transaction object (such as Description, EntranceCode and
PurchaseId) that is not included in the agreed character set, the characters are converted to an
equivalent that does occur in the character set.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 16 of 24

Result

Invoking RequestTransaction can essentially produce two results:

• If no error occurs, an AcquirerTransactionResponse object consisting of the following
elements is returned:

o AcquirerId: the ID of the acquirer.

o TransactionId: unique identification of the transaction as issued by the acquirer. It
is recommended to link this number to your own purchase number (PurchaseId) to
support your own accounting system.

o IssuerAuthenticationURL: the full URL of the issuer (the consumer’s bank). The
online shop should redirect the consumer automatically to this URL.

• If an error does occur, a different message is returned. For further details see section 4.4.

4.2.1 Redirect to the issuer

Once the transaction request has been successfully initiated, the consumer is passed on via a
redirect to his or her own Internet banking environment. The URL at which the issuer expects the
consumer is sent in the answer to the transaction request. With the help of the following example
code, the consumer is redirected to the issuer:

 NB: The Reference Guide states that the acceptor has to validate the URL before the
redirect; one of the checks made in validation is to ensure that the URL does not contain any
scripting. The iDEAL Advanced Connector performs this URL check automatically.

$connector = new iDEALConnector();

// add parameters

$response = $connector->RequestTransaction(. . .);

// add error check

$url = $response->getIssuerAuthenticationURL();

header("Location: " . $url };

NB: The iDEAL Reference Guide states that the redirect to the issuer has to take place within the
browser window in which the consumer has clicked on the Pay button. The acceptor’s entire page
has to be replaced by the selected issuer's entire page. It is therefore not allowed to use a second
browser window (pop-ups) or frames.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 17 of 24

4.2.2 Redirect to the online shop

After the Internet banking payment (successful or otherwise), the consumer is automatically
redirected to the acceptor's online shop, via the URL that is configured as a value of
merchantReturnURL.6

Validation

The return URL automatically contains the entranceCode and the transactionId of the
transaction. The entranceCode is initially provided by the acceptor as a parameter of the
Payment protocol, and can then (in combination with the transaction ID) be used to ‘authenticate’
the consumer as the person for whom the transaction was launched.

 NB: It is advised always to perform this validation. Take account here of the required minimum
variation of the entranceCode as stated in 3.3.1 of the Reference Guide.

The online shop will then request the status of the transaction. To do this, use the
RequestTransactionStatus function (see next section).

4.3 Status request (RequestTransactionStatus)

After carrying out a payment order, the online shop itself should always request the status of the
transaction through iDEAL’s so-called Query protocol. This protocol is implemented in the iDEAL
Advanced connector through the function RequestTransactionStatus.

Input

To invoke RequestTransactionStatus, you only require the TransactionId parameter of
the transaction that is to be checked.

Result

Invoking RequestTransactionStatus can essentially produce two results:

• If no error occurs, an AcquirerStatusResponse object consisting of the following
elements is returned:

o AcquirerId: the ID of the acquirer.

o TransactionId: the ID of the transaction.

o Status: the status of the transaction.

6 If a different URL is desired in special cases, the URL given in the configuration can be overruled by (temporarily)

updating the merchantReturnURL property of the Connector.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 18 of 24

o If the transaction has been successful (status=Success), the consumer’s details will
also be provided, i.e. his or her ConsumerAccountNumber, ConsumerName, and
ConsumerCity.

• If an error does occur, a different message is returned. For further details see section 4.4.

The example code for invoking RequestTransactionStatus may, for example, be as follows:

 $response = $connector->RequestTransactionStatus($transactionId);

 if (! $response) {

 $errorCode = $response->getErrorCode();

 $errorMsg = $response->getErrorMessage();

 $consumerMessage = $response->getConsumerMessage();

// Add: display consumerMessage

 } else {

 $status =& $response->getStatus();

 if ($status === IDEAL_TX_STATUS_SUCCESS) {

 $consumerName = $response->getConsumerName();

 $consumerAccNumber = $response->getConsumerAccountNumber();

 $consumerCity = $response->getConsumerCity();

 }

 }

Transaction successful

Section 2.3.1 of the Reference Guide describes the possible statuses that can be returned by
RequestTransactionStatus. Only the status Success means that the transaction has been
successful, and that delivery should be made.

NB: If the acceptor uses iDEAL reconciliation, then the iDEAL Dashboard will display not only status
003 (Success), but also the subsequent statuses 007 (reconciled) and 009 (paid). These statuses also
indicate a successful transaction. You should always receive a confirmation of the status Success via
RequestTransactionStatus; you cannot distinguish between 003, 007 and 009 from the
programming. For more information on reconciliation see the iDEAL Dashboard.

Status unknown

In implementation, take account of the fact that a consumer may decide to close the browser
during or immediately after making the payment.

In such cases, he/she is not automatically redirected to the online shop, so the status of the
transaction is not requested automatically. If the online shop is not set up for this situation, a
consumer may have made a payment but does not receive a product because according to the
information of the acceptor the transaction status is still 'open'.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 19 of 24

This is not only undesirable, but also in conflict with the acceptor’s ‘obligation of proactivity’. This
‘obligation of proactivity’ and possible solutions to the outlined problems are considered in more
detail in the next section.

Considering the number of status requests per transaction:

• Maximum of five times per transaction;

• Maximum of two times during the expirationPeriod;

• After the expirationPeriod not more often than once per 60 minutes;

• No status request after a final status has been received for a transaction;

• No status request for transactions older than 7 days.

Examples of possible times when a status request can be executed:

• 30 seconds after a transaction request is sent;

• Half-way through an expirationPeriod;

• Just after an expirationPeriod;

• A certain period after the end of the expirationPeriod.

Usually one of the final statuses should be returned shortly after the expiration period. If the “Open”
status is still returned after the expiration period, this can indicate a system failure. If this failure is
not solved within 24 hours, please refer to the IDEAL Dashboard and if desired contact the iDEAL
service desk. Please stop sending StatusRequests.

4.3.1 Obligation of proactivity

The acceptor has a so-called obligation of proactivity with regard to the status of a transaction.
This means that an acceptor is personally responsible for obtaining a final status for a transaction,
even if the consumer is not redirected to the online shop after paying for the transaction or
otherwise. This latter situation may occur when the customer closes the browser window early.

If the status of a transaction is unknown, or is equal to Open, you have the following options for
getting the status:

- Perform a status request ‘manually’ for a certain transactionID. This requires
implementing a function in the online shop which allows the acceptor to launch a status
request for an individual transaction for a given transactionId.

 NB: Functions that are solely intended for the online shop owner and not for consumers
must be implemented in such a way that unauthorized persons cannot launch them either
directly or indirectly. An adequate authorization mechanism must be implemented for this
purpose.

- Perform automated periodic status requests for all transactions that have not yet been
completed. Here, the same guidelines apply as for requesting a single transaction status
‘manually’.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 20 of 24

- Perform a status request automatically after the end of the expirationPeriod. In this case,
see also the last page of section 3.3.1 of the Reference Guide.

- Log into the iDEAL Dashboard, search for the payment and request the status using the
‘status request’ button.

Example

An online shop that sells flight tickets reserves a ticket for every potential purchase for a period of
15 minutes. A customer has to purchase a flight ticket within this period. If he or she does not, the
ticket is released again for sale to other consumers. If the consumer purchases a flight ticket
through iDEAL within 5 minutes but closes the browser window at his or her Internet bank after
payment, he or she is not redirected to the online shop. The online shop then does not receive the
signal that the payment has been completed, and will release the flight ticket after 15 minutes,
although the consumer has actually paid!

Measures to prevent this should be taken in the online shop, for example by implementing a query
function linked to a timer. The online shop should then (in this specific example) be able to make
use of an expirationPeriod of, for example, 10 minutes (which means that a consumer can
spend a maximum of 10 minutes on an iDEAL transaction; after that the transaction automatically
receives the status expired). If a consumer has not been redirected to the online shop after the
defined expiration period of 10 minutes, the self-constructed query function will then automatically
perform a status request, so that it has a final status well before the end of the reservation period
of 15 minutes.

4.4 Error handling

If an error occurs in the message traffic between the acceptor, acquirer and/or issuer, the iDEAL
Advanced Connector sends back a different message. To see whether an error has occurred, you
should check this after getting a response by invoking the following function:

if (response->IsErrorMessage())

{

 ...

}

If a fault has occurred, the IsErrorMessage() will reply 'true' and the error can be handled in the
next code block with the following construction:

if ($response->IsErrorMessage())

{

 $errorCode = $response->getErrorCode();

 $errorMsg = $response->getErrorMessage();

 $consumerMessage = $response->getConsumerMessage();

}

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 21 of 24

In these variables, the error code, the error message from iDEAL and the error message to the
consumer will then be displayed in succession.

Section 2.5.2 of the Reference Guide binds the acceptor to display only the consumerMessage
from this object to the consumer. To support this, the iDEAL Advanced Connector ensures that the
consumerMessage field is always populated (either with the value given by the acquirer or with
the mandatory texts from table 16 of the Reference Guide).

The example code for displaying the correct error message to the consumer may, for example,
appear as follows:

 $response = $connector->xxxx();
 if ($response->IsErrorMessage())

{

 $errorCode = $response->getErrorCode();

 $errorMsg = $response->getErrorMessage();

 $consumerMessage = $response->getConsumerMessage();

 // add: Show $consumerMessage on screen

 }

where “xxxx” represents a random function.

4.5 Proxy servers

If there is a proxy server active between the online shop and the acquirer’s site, it may be
necessary to log in to the proxy server as part of the communication. For this purpose, a function
has to be implemented in the online shop that entails a user name and password.

 NB: The user name and password for the proxy server have to be saved in a secure manner. If these
data are saved in a configuration file, the file must be saved in a secured folder that can only be
accessed by PHP.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 22 of 24

5 Testing

This chapter describes all the mandatory tests that have to be carried out before an online shop
with iDEAL Advanced integration can go online. In addition, the remaining functions of your online
shop should of course also be tested. However, that goes beyond the scope of this document.

5.1 Mandatory tests

The mandatory tests are described functionally in the Chapter ‘Registration process’ of the general
documentation for iDEAL Advanced. There are seven tests, which should all be performed in the
iDEAL test environment (https://idealtest.secure-ing.com).

The following checks should be made prior to testing:

• In the config.conf file, privateCert should be defined, with, as the value, the
organization name given when the acceptor’s certificate was created (via the steps in section
3.5 of this document).

• This certificate (cert.cer) must be uploaded to the iDEAL test environment.

After that, the tests are run as follows:

1. The acceptor logs into the iDEAL test environment using the user name and password
obtained in the registration process.

2. The acceptor sends 7 test orders to the URL of the iDEAL test environment
(https://idealtest.secure-ing.com/ideal/iDeal). The test environment returns the following pre-
programmed results:

Order Expected result if integration is correct

Transaction with amount = 100: Success

Transaction with amount = 200: Cancelled

Transaction with amount = 300: Expired

Transaction with amount = 400: Open

Transaction with amount = 500: Failure

Transaction with amount = 700: SO1000 Failure in system

Directory request (GetIssuerList) Issuer Simulator

3. The acceptor checks the results obtained.

NB: Test results are sent automatically to iDEAL for verification several times a day. Positive
verification of the test results is needed to activate iDEAL in the production environment.
Activation must be carried out by the acceptor, via the iDEAL Dashboard. This can be done from
the next day onwards.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 23 of 24

6 Deployment

This chapter describes some aspects of deploying a website with iDEAL Advanced integration. A
full description of all possible deployment scenarios goes beyond the scope of this document.

6.1 Hosting under own management

Check in advance that your own environment meets all the requirements for iDEAL Advanced (as
described in Chapter 3).

After deployment, check explicitly that all parts of your site are sufficiently protected from
unauthorized persons. For example, think about the configuration, your database, and any pages
that are solely intended for you.

6.2 Hosting at an external provider

If hosting is done by an external provider, explicit account must be taken of the privacy aspects of
your online shop. In particular, consider your private key (see section 3.5).

Also, check in advance that the hosting provider meets all the requirements for iDEAL Advanced
(as described in Chapter 3).

After deployment, check explicitly that all parts of your site are sufficiently protected from
unauthorized persons. For example, think about the configuration, your database, and any pages
that are solely intended for you.

 iDEAL Advanced – PHP integration manual

Copyright ©ING ING. Version 2.2, September 2009 Page 24 of 24

APPENDIX A: Data catalogue

Parameter Format Description
issuerID PN..4 ID of the consumer’s bank
merchantID PN..9 Your merchantID is provided in the registration process.
subID N..max6 Default value = 0 (zero)
authenticationType AN..max40 Fixed value = SHA1_RSA
merchantReturnURL AN..max512 URL on the acceptor’s system to which the client is redirected after making

payment in the Internet banking environment.

N.B. this page has to perform the status request.
purchaseID AN..max16 The online shop’s unique order number (determined by the acceptor)
amount N..max12 Total amount of transaction in whole eurocents

N.B. Note that in the test environment the result of a transaction is
influenced by the transaction amount. See section 5.1 for details.

currency AN3 Fixed value = EUR (at present only the euro is supported)
expirationPeriod RDT Period within which the iDEAL transaction can take place. Notation PT1H for

1 hour, PT10M for 10 minutes. Maximum value: 1 hour. Minimum value: 1
minute. Suggested value: 10 minutes.

language CL..2 Fixed value = nl (at present only Dutch is supported)
description AN..max32 Description of the order (determined by the acceptor)
entranceCode ANS..max40 Code is determined by acceptor. This code makes it possible to relate the

consumer to a specific transaction when the consumer is redirected to the
online shop after payment. The entranceCode is sent by means of
HTTP(S) GET to the merchantReturnURL.

acquirerURL n/a URL to which the iDEAL requests have to be sent.
Test environment: https://idealtest.secure-ing.com/ideal/iDeal
Production environment: https://ideal.secure-ing.com/ideal/iDeal

Format Description

AN Alphanumerical, free text
ANS Strictly alphanumerical (letters and numbers only)
N Numerical
PN Numerical (padded), content is filled up to maximum length with preceding zeros
..23 Maximum number of characters for alphanumerical and numerical values
CL Code list
RDT Relative date time field: PnYnMnDTnHnMnS

Parameters related to the certificate:

Parameter Description
privateCert Organization name that is given when the acceptor’s own certificate is

generated. See section 3.5 for details.

