
BuddyPress Privacy Manual
Draft

Version 1.0
January 24, 2011

Compatible with BP Privacy plugin v1.0-RC1

This Manual is bundled with the plugin. Look in the /manual directory
of the plugin's folder.

Copyright © 2011 Jeff Sayre & SayreMedia
This document is copyrighted and may not be redistributed outside of the plugin.

This document is not GPLed.

BuddyPress Privacy Manual
Draft Version 1.0

Table of Contents
Disclaimer! 3

A. BuddyPress Privacy Overview ! 4 - 9

B. Site Administrator's Guide! 10 - 21

C. Site User's Guide! 22 - 22

D. Developer's Guide! 23 - 38

2

Disclaimer

The BuddyPress Privacy Manual is offered in the
hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This is a draft version of the BuddyPress Privacy
Manual. As such, it may contain typos,
inaccuracies, and incomplete information. The
manual should be used as a general guideline.
Make sure you fully understand what you are doing
before taking any actions that might impact the
functioning of your WordPress-based network.

Proceed at your own risk. You are entirely on your
own. As always, fully backup your WordPress-
based network before taking any actions that could
impact its functioning.

I am not responsible for any issues you have with
the below suggested approaches, steps, and
techniques—including ones that may have been
caused by errors in this manual. Do not proceed
unless you know exactly what you are doing.
Whatever happens, you are on your own. You have
been warned.

3

A. BuddyPress Privacy Overview
As a BuddyPress social network site owner, architect, designer, or developer, you
know the importance of offering privacy filtering services to a siteʼs members. You
also understand that privacy has been one of the key components missing from
BuddyPress.

Wouldn't it be nice if there was a way to provide users fine, granular control over
who has access to which pieces of their personal data? After all, it's an essential
feature of any robust social networking platform.

The BuddyPress Privacy Component (also referred to as BP Privacy,
BuddyPress Authorization component, BP_Authz, or BPAz) is a BuddyPress
component that does just that. It provides users with fine, granular control over
who has access to which pieces of their BuddyPress-core generated personal
data.

Privacy Filtering: Itʼs All About What is Not There

Unlike most other BuddyPress plugins where it is easy to tell whether or not the
plugin is functioning properly, BP Privacy is a different beast. Why is that? Well,
for the vast majority of plugins, you are looking for something to appear—text,
graphics, formatting changes, etcetera.

With BP Privacy, determining whether privacy filtering is working can be a difficult
task as youʼre looking for what is not there—or more accurately for the absence
of something. In other words, it removes certain items from display based on a
given userʼs previously selected privacy settings and the identity of the viewing
user.

Therefore, assessing whether this functionality is working properly is not easy nor
quick. Whereas extensive and exhaustive testing has been preformed for this
version of BP Privacy, you should independently verify that BP Privacy is
functioning properly.

Important Note: If you are testing BP Privacy logged in as a Site Admin, then
you will see all of your usersʼ data as Site Admins are exempt from the impacts of
privacy filtering. You must test BP Privacy as a regular member, not as a Site
Admin.

4

Background: Authentication Versus Authorization

When it comes to user access of computer-based systems, access control has
two subgroupings: authentication and authorization.

Authentication deals with the process of verifying that a given user is indeed who
they claim to be. This is taken care of initially by the registration process and
subsequently on each login by the login script.

Authorization, on the other hand, deals with verifying and managing the access
rights a given authenticated user has to certain objects. This is usually
accomplished through access control lists (ACLs). An ACL is a listing of what
access rights, or authority, a given authenticated user has to a given object or
sets of objects.

The term “auth” is often used interchangeably for authentication or authorization.
But there is significant differences in meaning between these two terms. So as
not to confuse people, new terminology has been created by the IT community to
clearly differentiate between one or the other.

Because of this confusion, the process of authentication is now often referred to
as A1, or AuthN, or simply Au. The process of authorization is now often referred
to as A2, or AuthZ, or simply Az.

Since authentication must come before authorization, the A1-A2 ordinality of the
terms is evident. This also explains these two alternate names of my component
—BPAz and BP_Authz.

In brief, the following logic describes the BuddyPress Authorization (BPAz)
Component:

1. Authentication is different than authorization. The former must come
before the latter.

2. Users are the focus of social networks. They should have primacy
when considering platform functionality. They are the super objects
that create all content and therefore should have control over that
content. Therefore, each object is created and owned by a user.

3. Only authenticated objects should have control over authorizations.
4. Users are the only object that get authenticated.

5

5. Therefore, Users are the only object that can set and manage
authorizations.

Basic Definitions

Access Control List (ACL): a listing of what access rights a given user grants to
their objects. Seen another way, it is a list of the access rights, or authority, a
given user (authenticated or not) has to a given object or sets of objects owned
by another authenticated user.

ACL dataset: the entire access control list (ACL) across all core BuddyPress
components for a given user

ACL recordset: the subset of a userʼs ACL dataset that contains the access
control list for a given component

ACL record: a single record from a userʼs ACL recordset

Access Control in BuddyPress

Typically, Access Control Lists and protocols focus on flexibly setting access
rights to resources based on predefined roles (for example: site admin, group
admin, moderator, editor, contributor, member, user). This type of access control
is more often called, and more appropriately referred to as, role-based access
control (RBAC).

Role-based AC is necessary when two or more people are involved in the
management, oversight, and even ownership of specific subsets of data. This
group of people then need to be jointly authorized to perform certain functions.

But BuddyPress is a user-centric platform where there are currently no-jointly
owned or controlled subsets of data. This means that each object in BuddyPress
has one and only one owner. Why is this? Because in BuddyPress, there are no
roles offered by the Core components (with the limited exception mentioned
below for groups).

So, ignoring the overall Site Administrator, in BuddyPress, there is a one-to-one
relationship between a given piece of datum and a single owner of that datum.
Thus the BuddyPress Privacy Component is a light-weight ACL implementation.
A fully-featured RBAC-based ACL is not required.

6

Note: BuddyPress groups do allow for more than one assigned role (admin,
moderator, member). Even so, a group cannot own itself. It is created by and
administered by users. In fact, groups are largely owned by a single user—the
user who created the group. This is as it should be since groups cannot be
authenticated and, as was explained above, only authenticated objects (users)
should be allowed to authorize access to objects.

If Groups are ever allowed to "own" themselves, then there would either need to
be a way for each group to authenticate (that's not going to happen), or groups
would have zero ability to set authorizations. It all comes down to a group
requiring a user–a living, breathing, person–to mange its operations, in effect to
own it and control it. Thus, the user as the only object that can be authenticated,
is the fundamental object to which all authorization services are targeted.

Therefore, the BuddyPress privacy component (BPAz) implements a modified
ACL approach that puts the focus solely on two user levels.

1. The superuser: Site Admininstrator(s) that owns the entire site
2. All other users: a siteʼs members the own their individual accounts

User Roles in BuddyPress

Is essence, WordPress, not BuddyPress, defines user roles. BP Privacy is a
component that operates within BuddyPress exclusively. So user roles are
irrelevant to the operations of BPAz as BuddyPress focuses on users and not
user roles. Whereas most access control list protocols focus on setting and
managing permissions to resources (objects) based on user roles, BPAz is a
user-centric protocol focused on letting users define and control who has access
to their owned objects.

Therefore, the traditional setting of role-based privileges is not appropriate in
BuddyPress. Instead, the user is the only and ultimate role. Thus the focus is on
providing each user with appropriate control over their owned objects, over all the
data that they create and own within a site.

From a Site Administrators standpoint, they are the superowner of the site, they
are the superuser. Thus they have ultimate control over which privacy
mechanisms are enabled, which ACL levels are offered, and whether privacy is
even activated on their site.

7

From a site userʼs perspective, they are given a mechanism to control, to
manage the viewing of their personal data by others—profile, friends list, activity
streams, etcetera. Of course, this is dependent on what privacy rights the site
administrator has enabled.

Relationship Between BP Privacy, BuddyPress, and WordPress

BuddyPress is a plugin suite, a layer that sits on top of WordPress. Whereas the
BPAz is technically a WordPress plugin, living at the same level as BuddyPress,
it is entirely dependent on BuddyPress. It is thus more accurately a BuddyPress
plugin. Therefore BPAz offers privacy filtering and control to BuddyPress core-
created objects only, not objects created and controlled by WordPress or other
plugins that live outside of BuddyPress.

Therefore, it will not (in fact, cannot) offer privacy filtering to objects directly
created or controlled by WordPress itself or even other third-party, BP-dependent
plugins. Even though the Privacy API does offer some mechanisms for third-party
developers to extend privacy to their plugins, it is up to each BP plugin developer
to decide whether or not BPAzʼs privacy services can be utilized for offering
privacy filtering to their plugins. In future versions of BPAz, the Privacy API may
be more robust, allowing an easier privacy-filtering path to third-party plugin
developers.

Note: "BuddyPress" blogs are not a true BP core-created object. For blogs, BPAz
will offer only a simple show or donʼt show options within BuddyPress. This is
because blogs are created and controlled by WordPress and not BuddyPress.

Unused Privacy Fields in BuddyPress Tables

The BuddyPress data schema currently has some unused fields in various tables
that could be used for very-limited privacy control. It is not clear why these fields
where included and whether there is any intention of using them in the future.

It is clear, however, that BuddyPress was not developed with privacy in mind as
there is not current a facility for offering user-controllable privacy. It should be
noted that if the BuddyPress core team decides to rectify that shortcoming, that it
is better to mange user privacy via separate, dedicated ACL tables and not within
the non-ACL BuddyPress tables. Using dedicated ACL tables allows for more

8

fine-grained access control and sequesters all privacy decisions into its own
object.

OAuth and BP Privacy

If you are wondering why BuddyPress, or Wordpress for that matter, cannot use
OAuth for authorizations, please read my article OAuth, BuddyPress, and
Privacy.

9

http://jeffsayre.com/2009/12/21/oauth-buddypress-and-privacy/
http://jeffsayre.com/2009/12/21/oauth-buddypress-and-privacy/
http://jeffsayre.com/2009/12/21/oauth-buddypress-and-privacy/
http://jeffsayre.com/2009/12/21/oauth-buddypress-and-privacy/

B. Site Administrator's Guide
Note: BP Privacy is a GPLed BuddyPress Component provided AS IS and at no
cost. Read the license.txt and disclaimers.txt files that are distributed with the
plugin for more details.

The current, stable version of this plugin, v1.0-RC1, is a release candidate
version to be used only in a development sandbox and not in a production
environment. Use at your own risk. This plugin is also not being developed or
supported anymore by the author. It is released to the BuddyPress community for
it to be adopted and further developed.

This plugin is designed, but not guaranteed, to function properly when activated
on a clean installation of the versions of PHP, WordPress, and BuddyPress
indicated in the readme.txt file. It is designed, but not guaranteed, to function
properly using the default BuddyPress theme(s). There are no guarantees this
plugin will function with any 3rd-party plugin, 3rd-party (custom) theme, or any
particular Web browser—although it does require a modern Web browser and
you and your users must have javascript enabled.

The following sections are listed in no particular order of importance. They are
provided as is in the hope that they help resolve a few, key issues and questions
that BuddyPress Site Administrators may have when using BP Privacy.

If you are having difficulties getting BP Privacy to work, or if it had been working
but stopped working when you upgraded to a newer version of WordPress or
BuddyPress, then see the last item at the end of this section—xiv:
Troubleshooting BP Privacy.

i. BP Privacy Administration

BP Privacy offers a number of admin-configurable settings that can be
reached when logged in as a super admin. These setting can be found by
navigating to the "BuddyPress > Privacy Settings" menu.

ii. Issues with Setting Admin Privacy Options

10

Warning: Before making any direct changes to your database you should
back it up. If you are not comfortable working with MySQL via phpMyAdmin,
or some other database administration tool, then do not proceed.

If you are having troubles setting privacy options (including not been able to
see the entire privacy settings screen), then the first step to try is deleting
the options entry bp_authz_admin_settings_options in your MySQL
database.

Where this entry is found depends on whether youʼre using WordPress as a
single blog install or multisite install. If using WordPress to host a single
blog, then look in the wp_options table. If using WordPress in multisite
mode, then look in the wp_x_options table.

If your BuddyPress install is running on a different blog ID than number 1,
then you should look for the bp_authz_admin_settings_options entry in the
wp_x_options table where x equals the blog ID that BuddyPress is installed
under.

Once you have deleted this metadata record, you should have access to the
full Admin Privacy settings screen once again. However, the settings will be
reset to default, so you will have to reset them to your desired level.

iii. More About the Lockdown settings options

The lockdown settings options is for basic site-wide privacy. It does not
create a perfectly private site. The BuddyPress Privacy Component is
primarily targeted to offering member-configurable privacy filtering services.

To enable site lockdown, the welcome.php and maintenance.php template
files need to be available to BuddyPress. This is easily done by copying the
folder "/privacy" found under the "/themes" directory into the bp-default
directory or your custom themeʼs root level. Just copy the "/privacy" folder.
Do not copy the "/themes" directory.

When using this setting, you may need to implement additional measures to
create an entirely private community. For instance, it is possible that any and
all of BuddyPress' feeds may still be visible to the outside world.

11

There is a yet-to-be-implemented function, bp_privacy_block_feeds(), within
the Privacy API that is hardcoded to remove all BuddyPress-generated
feeds. This function is deactivated be default. You can uncomment the
add_action() line to enable it but it will remove all the siteʼs feeds for all
members.

In a future version of BP Privacy, this function might be enabled so that Site
Admins can have an option to set whether RSS feeds are private or not and
possibly also offer individuals the right to set whether or not their content is
exposed via RSS feeds. However, this feature is not currently available in
v1.0-RC1.

iv. More About the Privacy Templates

The three custom templates are very simple. Within each template file are
filters that you can hook into to control the basic outputted text.

You should manually edit these files, styling them to fit in with your themeʼs
design, and augmenting them with more detailed information—for instance,
adding your real privacy policy to the privacy-policy.php file. You can also
replace these files with your own custom template files. As long as they have
the same name as the privacy templates for which you are substituting, they
work within BuddyPress, and they are located where the special privacy
templates are supposed to be located, they should function fine.

v. Using MySQL's InnoDB Storage Engine for the ACL Tables

Disclaimer: Proceed at your own risk. You are entirely on your own. I am
not responsible for any issues you have with the below suggested
approaches, steps, and techniques—including ones that may have been
caused by errors in the below outline. Do not proceed unless you know
exactly what you are doing. Whatever happens, you are on your own. You
have been warned.

See this article to learn a little more about MySQL's InnoDB storage engine
as it applies to BP Privacy.

12

http://jeffsayre.com/2010/10/28/buddypress-privacy-offers-you-the-power-of-the-force/
http://jeffsayre.com/2010/10/28/buddypress-privacy-offers-you-the-power-of-the-force/
http://jeffsayre.com/2010/10/28/buddypress-privacy-offers-you-the-power-of-the-force/
http://jeffsayre.com/2010/10/28/buddypress-privacy-offers-you-the-power-of-the-force/

To take advantage of the InnoDB storage engine for BP Privacy, you must
manually configure the BP_AUTHZ_USE_INNODB constant. This is done
by placing the following in your siteʼs wp-config.php file (see lines 51-86 in
bp-authz-core.php):

// Install ACL tables using the InnoDB storage engine
define('BP_AUTHZ_USE_INNODB', true);

If youʼve already installed BP Privacy with the default MyISAM storage
engine but want to take advantage of the InnoDB storage engine instead,
you have two options.

1.) The easy option. This should only be used if you have zero stored
privacy data or privacy data that you do not care if it gets deleted (because it
will get deleted). If this is the case, and you wish to proceed, here are the
suggested steps.

a. Follow steps 1-4 of in the below section entitled "Performing a
Clean Install of BP Privacy". Do not perform step 5.

b. Next, as detailed above, you have to add the code to the wp-
config.php file for setting the BP_AUTHZ_USE_INNODB
constant.

c. Finally, you must reinstall BP Privacy and then check your
MySQL DB to make sure that the tables have now been installed
to use InnoDB.

2.) The second option is to be used if you need to keep any of the privacy
data currently stored in the ACL tables.

a. First, as detailed above, you have to add the code to the wp-
config.php file for setting the BP_AUTHZ_USE_INNODB
constant.

b. Next, you need to manually change the storage engine type for
the xx_bp_authz_acl_main and xx_bp_authz_acl_lists tables from
MyISAM to InnoDB using phpMyAdmin or whatever backend
system you use for managing MySQL.

13

c. After you have done this, you'll need to manually create the
proper Foreign Keys and select at least the Cascade Deletes
option (I would also suggest selecting the Cascade Updates
option as well—see below for the reason). In phpMyAdmin, you
can do this by going to the “Structure” tab for both ACL tables and
searching for the link “Relation view” near the bottom of the field
listing. This link will only be visible once you set the “Storage
Engine” type to InnoDB under the “Operations” tab.

Note on Cascade Updates: Although the ACL class model coding does not
take advantage of the InnoDB storage engineʼs ability to cascade updates–it
only cascades deletes–I included that syntax in the CREATE TABLE
definitions for a few reasons:

* It forces MySQL to check to make sure a parent record exists
before adding a new record to a child table (never a bad idea).

* If for some reason you ever compact the main ACL table and the
ID field (the Primary Keyed field) is renumbered from the start,
then the corresponding fields in the child table will automatically
be updated with the new ID numbers. This is more than likely
something that will not be an issue, but it is a nice insurance
measure nonetheless.

vi. Performing a Clean Install of BP Privacy

Warning: Before proceeding with this course of action, make sure you have
a current backup of your WordPress MySQL database just in case.

A clean install of BP Privacy means deleting everything associated with the
BP Privacy Component. You should execute this operation in the following
order:

1. Purge BP Privacy's metadata records by following instructions in
the below section entitled "Resetting BP Privacy's Metadata
Settings"

2. Deactivate BP Privacy if you have not yet done so

14

http://localhost:80/phpMyAdminForPHP5/tbl_relation.php?db=Mu_Test&table=wp_bp_links_votes&token=7e5e07fe43d4d2cfa6973c0623e2a9bb&goto=tbl_structure.php&back=tbl_structure.php
http://localhost:80/phpMyAdminForPHP5/tbl_relation.php?db=Mu_Test&table=wp_bp_links_votes&token=7e5e07fe43d4d2cfa6973c0623e2a9bb&goto=tbl_structure.php&back=tbl_structure.php

3. Delete the bp-privacy plugin from your /wp-content/-plugins
directory

4. Drop the ACL tables from your MySQL database following the
instructions in the below section entitled "Dropping BP Privacy's
ACL Tables from MySQL"

5. Manually reinstall and then activate BP Privacy

vii. Resetting BP Privacy's Metadata Settings

To reset BP Privacy's metadata settings, you need to purge a few metadata
records from WordPressʼ meta tables (the wp_sitemeta and wp_x_options
tables if using multisite). You can easily do this by uncommenting a few lines
of code in the function bp_authz_plugin_deactivated() found in the file bp-
authz-loader.php.

These lines are commented out by default as indicated in that functionʼs
inline comments:

“If you enable the code below, then you will have to reset any
previously disabled Admin privacy objects. In other words, when you
reactivate the privacy component, it will run with all privacy objects
fully active. By keeping this code disabled, you can easily deactivate
privacy filtering and then reactivate it without losing any previous
settings.”

Simply uncomment those lines before deactivating the Privacy Component
(plugin). You must then deactivate BP Privacy, triggering the newly-
uncommented code, to purge the privacy metadata records.

At this stage, the component will be reset to itʼs default metadata settings. If
you plan to reactivate the component right after this step (meaning you are
not performing a clean install as detailed above), then make sure to
comment back the aforementioned code lines so that the settings do not get
purged when you deactivate the plugin the next time.

15

A future version of the Admin Menu may allow you to click a box to indicate
whether you wish BP Privacy metadata to be purged from WordPressʼ
metadata tables automatically upon plugin deactivation.

viii. Dropping BP Privacy's ACL Tables from MySQL

Warning: It is always wise to fully backup your database before performing
any database (DB) management task. This backup may prove indispensable
if you make a mistake when working in the DBʼs back-end environment.

A clean install requires that you remove the ACL tables from your MySQL
database. In DB parlance, this is called dropping the tables from the
database.

BP Privacy's ACL tables are bp_authz_acl_main and bp_authz_acl_lists
(both of these tables will more than likely have a "wp_" prefix).

If youʼve installed the two ACL tables to use the InnoDB storage engine,
then you will have to drop the child table xx_bp_authz_acl_lists before the
parent table xx_bp_authz_acl_main. Attempting to do it the other way
around will not work. You will get a warning message.

Only do this if you absolutely do not care about any data that is stored in the
ACL tables as once those tables are dropped, all data will be lost.

ix. Sharding Your Database

As the privacy ACL object created by BPAz's two classes do require joins, if
you are sharding your database, it is best to keep both
xx_bp_authz_acl_main and xx_bp_authz_acl_lists tables on the same
partition.

x. Issues with BP Privacy Making AJAX Calls When the wp-admin Directory
is Password Protected

BP Privacy declares its own JavaScript namespace object for handling all in-
plugin AJAX requests. If you have added server-side password protection to

16

your /wp-admin directory, then any AJAX requests will fail. This is because
the key file that handles all AJAX requests in WordPress is the wp-admin/
admin-ajax.php file.

Since BP Privacy, and all other 3rd-party plugins that might make AJAX
requests, can't access the /wp-admin directory without a password, they will
not be able to utilize AJAX.

If you have password protected your /wp-admin directory, then you will need
to turn off the "Members of these Groups" and "These Users Only" ACL
Privacy Settings in the Site Admin Privacy Settings page.

See the subsection entitled "Using AJAX to display Group and User
Listboxes" in the Developer's Guide (Section D below) for more details.

xi. Consider Disabling "Members of these Groups" and "These Users Only"
ACL Privacy Settings For Large Sites

Although BP Privacy offers a number of increasingly fine user-access
privacy settings, for large sites (greater than 500 to 1000 members), it may
make sense to disable the "These Users Only" ACL Privacy Setting in the
Site Admin Privacy Settings page.

For sites that have more than 250 groups it might also make sense to
disable the "Members of these Groups" ACL Privacy Setting.

For both of these cases, you will have to determine what "large" actually
means from your users' perspective. Is more than 100 users too large to
make use of the "These Users Only" listbox worthwhile? Is it 250? Is it 750?
At what point does the total group count become too large to make use of
the "Members of these Groups" listbox worthwhile? Each niche-network will
have its own sweet spot with regards to these two issues.

xii. A Note About the “Members of These Groups” and “These Users Only”
ACL Options

The ACL options “Members of These Groups” and “These Users only” use
JSON to populate the listboxes. You must be running at least PHP 5.2.0 for
this to function properly. Furthermore, the character collation setting in your

17

wp_config.php file must be set to UTF-8 as the PHP json_encode()
function only works with UTF-8 encoded data.

This is how it should look in your wp-config.php file:

define('DB_CHARSET', 'utf8');

Therefore, if you are running a PHP version older than 5.2.0, or your
character collation is set to something other than “utf8”, then you will need
to disable the “Members of These Groups” and “These Users only” ACL
options in the Site Administratorʼs backend under “BuddyPress > Privacy
Settings > Customize ACL Settings”.

xiii. Issues Filtering Legacy Activity Stream Items

If you have been running your BuddyPress-powered community for more
than a year, there will be a few activity types on which your siteʼs users will
not be able to set activity privacy filtering. For instance, BuddyPress used
to have a component called the Wire. It also has renamed a few activity
items over time and those items as well will cannot be filtered out.

Only BuddyPressʼ current activity items can be filtered by BP Privacy.

xiv. Troubleshooting BP Privacy

Warning: Before making any direct changes to your database or our siteʼs
directory structure, you should completely backup your database and site. If
you are not comfortable working with MySQL via phpMyAdmin, or some
other database administration tool, then do not proceed. If you are not
comfortable with any of the below procedures, do not proceed. You are
entirely on your own. Proceed at your own risk.

a. Issues with initial installation

If you are having issues getting BP Privacy to install, please make sure
that WordPress and BuddyPress are functioning properly. If so, then
make sure that you are using the versions of PHP, WordPress, and
BuddyPress required (as listed in the pluginʼs readme.txt file).

18

If all of the above check out, then you may need to reinstall BP Privacy.
To do that, you should deactivate BP Privacy if it is activated, then
delete the /bp-privacy folder from the /wp-content/plugins directory.
Next, manually reinstall BP Privacy and then try reactivating.

If you are still having issues, see the next item.

b. Issues with 3rd-party plugins and custom themes

As stated in the introduction of this section, BP Privacy is designed, but
not guaranteed, to function properly using the default BuddyPress
theme(s). There are no guarantees this plugin will function with any 3rd-
party plugin, 3rd-party (custom) theme, or any particular Web browser—
although it does require a modern Web browser and you and your users
must have javascript enabled.

If you are still having issues getting BP Privacy to function properly, you
may have a plugin conflict, an issue with the theme youʼre using (if it is
not the bp-default theme), of some other error such as some
incompatibility being caused by a code customization on your site.

What you need to do is distill your siteʼs operating environment down to
the least common denominator.

The first step is to make sure that you are using BuddyPressʼ default
theme. Switch to it and see if the issue goes away. If it does, then there
is some problem with your custom theme. Contact the designer of the
theme.

If the problem does not go away, then it is time to focus on possible 3rd-
party plugin conflicts. There are two approaches. The first is to
deactivate one plugin at a time, testing after each deactivation to see if
BP Privacy starts functioning properly again. If it does, then the last
plugin you deactivated is likely the cause of the conflict.

The second approach is to deactivate all 3rd-party plugins except BP
Privacy and see if BP Privacy starts functioning properly again. If it
does, then the probability of a 3rd-party plugin conflict is high. You then

19

need to reactivate plugins one at a time, testing after each reactivation
until the problem returns. When the problem returns, then the last
plugin you reactivated is likely the cause of the conflict.

It can also often be useful to check your serverʼs error logs, in particular
the log for PHP errors. Any errors in that log file can shed light on what
is happening with your siteʼs operating environment.

c. Issues after upgrading WordPress or BuddyPress

It is likely that when WordPress is updated to the 3.1 series and
BuddyPress is updated to its 1.3 series, that BP Privacy will have a
number of issues and stop working. It will not only be BP Privacy but
many plugins and even themes that will have issues.

BP Privacy has gone through two major code refactorings as a result of
changes to BuddyPressʼ core codebase. It happened when BuddyPress
went from the 1.0 series to the 1.1 series. It happened again when
BuddyPress went from the 1.1 series to the 1.2 series.

It is not unusual for the core development team to change functions that
plugins rely upon. Even a minor change in a functionʼs behavior can
cause a plugin to stop working. Sometimes the changes are more major
like restructuring key object arrays that a plugin might require to
perform some function. There are a number of minor to major changes
that can occur between major version releases.

With BP Privacy, BuddyPress core code changes can have more of an
impact because BP Privacy is tightly tied into core functionality. It is a
plugin that alters the way the core outputs data. So, unlike other 3rd-
party plugins, BP Privacy is highly-dependent upon deeply-connected,
and rarely used (by other plugins) object arrays.

With a major version upgrade of BuddyPress, tracking down all the
BuddyPress-core codebase changes that are impacting BP Privacyʼs
operation is not an easy or quick process. The first place to start is to
examine the PHP error log. After that, it can be a slow and difficult
process requiring a function by function check (within BP Privacy), close
reexamination of the contents of the various BuddyPress-generated

20

object arrays that BP Privacy relies upon, and sleuthing around in
general. Sometimes something as simple as a renamed, deprecated,
our re-prioritized BuddyPress core hook can be the root of a problem.
But, more than likely, it will not be one problem. It will be a number of
core codebase changes that are causing the issues.

Remember, BP Privacy is a 3rd-party plugin. It is not a core
BuddyPress component. Privacy is an after thought, if even that, in
BuddyPress. So a lot of bending, prodding, and jury-rigging were
required to get BP Privacy to integrate into BuddyPress in the first
place. Expect many tens of hours, possibly hundreds of hours,
retrofitting BP Privacy to get it to function properly again in each newest
version of BuddyPress (and sometime also WordPress).

d. General issues and support

As mentioned in numerous places in this document, the BP Privacy
plugin package, and a number of blog postings, BP Privacy is not being
developed or supported anymore by the author. It is released to the
BuddyPress community for it to be adopted and further developed.

Therefore, if you have issues or questions that are not answered here
or that you cannot figure out on your own, you should start a thread on
the BuddyPress Support forums and see if anyone there can offer
support.

It may be necessary for you to hire a skilled BuddyPress developer to
help troubleshoot the issue. I am not for hire so please do not contact
me. Also, I will not be answering any email about BP Privacy, including
requests for my suggestions on competent developers to hire. Please
use the BuddyPress Support forums instead.

21

C. Site User's Guide
Note: BP Privacy is a GPLed BuddyPress Component provided AS IS and at no
cost. Read the license.txt and disclaimers.txt files that are distributed with the
plugin for more details.

[This section needs to be completed]

Saving Global or Group-level ACL Settings on Tiered Privacy Forms: To
successfully save global or group-level ACL settings, you must check the “Apply
Globally on Save” or “Apply to Group on Save” checkboxes respectively. If you
do not, your selected settings will not be saved.

Resetting ACL Levels on Tiered Privacy Forms: On tiered privacy settings
forms, it is easy to reset the ACL levels back to default (meaning back to "All
Users") for all the privacy items on the given form. This is also called zeroing out
your privacy settings.

This allows users a unique way to easily and quickly reset all ACL levels across
these components, or just a subset of the ACLs within a group, back to default.
Currently for BuddyPress' core components, multi-tiered privacy settings forms
are available for profile and activity items only.

To zero out your ACL levels across an entire component, you choose the "All
Users" settings in the Global "Who Can View" dropdown box and then make sure
that the "Apply Globally on Save" checkbox is checked. Hit the "Save Changes"
button at the bottom of the form and all of your privacy items for the given
component will be reset to default.

A similar process applies to zeroing out the privacy items within a group. Of
course, you can also zero out a single ACL setting on its own. The method
described above is another example of the flexibility and control offered to users
via BP Privacy.

22

D. Developer's Guide
Note: BP Privacy is a GPLed BuddyPress Component provided AS IS and at no
cost. Read the license.txt and disclaimers.txt files that are distributed with the
plugin for more details.

1. General steps to add privacy to your custom plugin:

a. First read the Developer's Guide in full to get a general understanding of
some of the key programmatic features of BP Privacy.

b. Register your plugin with the BP Privacy Component: this will add your
plugin to the list of privacy services that the Site Admin can enable or
disable.

c. Create your custom privacy settings screen(s): you'll need to create your
own loops that grab the appropriate data from your plugin's table(s)/
array(s) at the appropriate time. Look at BP Privacyʼs settings files for
examples of both tiered and single settings forms.

d. Add your componentʼs privacy settings to BP Privacyʼs menu
e. Create custom filter(s): grab any user ACL preferences for the data that

your plugin stores in the ACL tables and use that data to perform
whatever filtering is required. At the start of your privacy filtering
routines, make sure to check whether privacy filtering is enabled for your
component. See the BP Privacy's core filters to see how it is done.

f. To have BP Privacy automatically take care of filtering activity items
generated by your plugin, make sure that activity stream actions are
properly registered with BuddyPress. Use bp_activity_set_action() and
bp_activity_add() to do this. Search BP core to see how the core
components utilize these functions.

2. Creating a Tiered Privacy Settings Screen

In a future version of BP Privacy, there may be a developers directory that
holds bare-bones templates for creating tiered and single privacy settings
forms. But for now, you need to carefully study the privacy settings forms
that BP Privacy uses to understand how to create and implement your own
privacy settings form(s) for your custom component.

i. Auto triggering tiered containers: The Global Groups Singles Grid
Array

23

Note: This is automatically handled for you if you use the suggested coding
within the example tiered privacy settings form.

This section needs to be written. For some details, read the “Populate
$containers_to_trigger array” and “Looping Through the
$containers_to_trigger Array” comment blocks within any tiered settings
form.

ii. Using AJAX to display Group and User Listboxes

a. BP Privacy's JavaScript namespace object

BuddyPress declares its own AJAX namespace so themes can access
the WordPress AJAX functionality (see bp_core_add_ajax_url_js() in
bp-core-cssjs.php). But BP Privacy is a plugin, not a theme. Relying on
wp-load.php for plugin AJAX functionality is not a good idea.

So, BP Privacy creates it's own JavaScript namespace object for the file
that handles the AJAX request. It does this by directing all AJAX
requests to wp-admin/admin-ajax.php. The admin-ajax.php file
processes both admin AJAX requests as well as front-end requests.
See Note 2 on this WordPress Codex article entitled AJAX in Plugins to
learn more about this overall issue.

This new AJAX namespace is created in bp-authz-cssjs.php in the
bp_authz_create_js_namespace() function.

b. AJAX Calls in BP Privacy When the /wp-admin Directory is
Password Protected

See the subsection entitled "Issues with BP Privacy Making AJAX Calls
When the wp-admin Directory is Password Protected" in the Site
Administrator's Guide (Section B above) for more details.

c. Outputting Group and User Listbox Data

Note: This is automatically handled for you if you use the suggested
coding within the example tiered privacy settings form.

24

http://codex.wordpress.org/AJAX_in_Plugins%23Ajax_on_the_Viewer-Facing_Side
http://codex.wordpress.org/AJAX_in_Plugins%23Ajax_on_the_Viewer-Facing_Side

Upon form load of any privacy settings screen, if the BPAz level of a
given privacy item is currently set to 3 or 4, then the function that
outputs the group and user listboxes
(bp_authz_create_privacy_settings_listbox() function within the BP
Privacy API) is called to populate the screen with the appropriate data.

However, if the BPAz level is something other than 3 or 4, the listbox
function is not called. This is handled this way to limit the number of
resources called on form load. There is no reason to pre-populate
certain form fields if they are not currently being used.

Whenever the ACL selector is changed, it triggers the jQuery change()
function. If the newly-set ACL level is 3 or 4–which means that the user
has chosen either "Members of These Groups" or "These Users Only"
in the "Who Can View" selector–then a series of events transpires
which leads to the triggering of an AJAX request. This AJAX request will
autogenerate and output the contents of the appropriate listbox.

Note: in the above scenario, the BPAz level is not currently set to 3 or 4
for that privacy item as if it was, the listbox would be displayed on form
load.

However, for the jQuery function to work, specific data needs to be
passed into it. This data is available via several hidden input fields
within the divisional id element. The divisional id selector containing the
required hidden variables has a postfix of "...-listbox", is unique and
depends upon which privacy item is currently being acted upon. When
the ACL level has been changed to 3 or 4, the jQuery function will fire
the serializeArray() command which grabs these prepopulated variables
from the hidden input elements.

Once the data has been grabbed by the jQuery function, it is passed as
parameters into bp-authz-listbox-ajax.php. This file uses the
bp_authz_create_privacy_settings_listbox() function within the BP
Privacy API.

The result returned from the listbox function is a html-formatted string
that gets passed back to the calling jQuery function via a JSON-
formatted array. If the procedure indicates success, then the jQuery

25

function will output the passed-in html string into the underlying
divisional container <div class="listbox_output">. This creates the
desired select box with any previously selected options highlighted.

This is why BP Privacy requires PHP 5.2 at a minimum as the
json_encode() function is not available in prior versions of PHP.

Note on passing the lists array into jQuery using JSON: As the lists
array of the current privacy item object is an associative array by
design, this causes an issue with its usability within jQuery as javascript
does not support associative arrays. Therefore, the elements within the
lists array need to be converted to a usable key-value pair-based string
before being used by jQuery and before being passed into the bp-
authz-listbox-ajax.php(). This is accomplished via the json_encode()
function.

d. The AJAX spinner

As the above detailed procedure can result in an AJAX event being
triggered, server response time my vary. Therefore, it is wise to provide
some visual cue to the user that something is indeed happening and
that they should be patient (hopefully that means only for a second of
two at most). The best visual cue is to display an animated "loading"
image. That's where the ajax-loader.gif file located in the components /
images directory comes in.

When the form is first rendered, the AJAX spinner image (ajax-
loader.gif) is populated but hidden via it's class selector "ajax_spinner"
which defaults to display:none in the CSS file. If a user requests to see
the group or user listbox (BPAz 3 or 4), it triggers the jQuery sequence
and the AJAX spinner is displayed while the request is being
processed. Once it completes, the image is hidden once again.

You might be thinking that this UX feature is easy to implement. I
certainly thought that would be the case. But after trying all the standard
methods of showing and hiding an AJAX spinner image, it become clear
that this was not going to be an easy challenge to figure out.

Why? Well, as I studied this, I realized that most applications have a
much simpler need for displaying such a visual clue. Most just have one

26

cue, not the many possible cues that populate the tiered privacy form—
one for each privacy item listbox.

What happens using the traditional methods? For each privacy item
where the listbox has been previously selected, the next time the user
chooses to view the listbox for another privacy item, all of the animated
AJAX loading spinners are toggled on then off. That's correct—all of
them at once. The reason for this, as well as the solution, is described
below.

I first tired to use the below standard method of showing then hiding the
AJAX spinner.

jQuery("div#" + idname + "-listbox img.ajax_spinner")
" .ajaxStart(function(){
" " jQuery(this).show();
" }
" .ajaxStop(function(){
" " jQuery(this).hide();
" }
);

But these AJAX event handlers are global. They cause the image to be
shown or hidden for all previously-triggered AJAX events. This is due to
the way jQuery handles global AJAX events and how these AJAX
events are stored in the browser's cache. So this did not work.

I then tried experimenting with trying to use local-level AJAX events.
This failed as well. The beforeSend function would not trigger. Only the
complete function triggered.

jQuery.post(PrivacyAjax, {
" beforeSend: function () {
" " jQuery("div#" + idname + "-listbox img.ajax_spinner").show
();
" },
" complete: function () {
" " jQuery("div#" + idname + "-listbox img.ajax_spinner").hide
();
" },

27

" action: "bp_authz_ajax_listbox",
" '_wpnonce': ""+wp_nonce_name+"",
" ...
});

I then experimented with setting the cache and global settings to false
for each AJAX post request. That did not work. Numerous permutations
of CSS, JS, and AJAX did not make a difference.

Finally, I hit upon what is a rather brute force way to control the display
of the AJAX loading spinner just for the privacy item in question—via
insertion of the element into the DOM with jQuery's .append() command
after the listbox html was outputted.

When a user chooses to display a listbox, other than one that may
already be displayed upon form load, the jQuery event will trigger the
display of the AJAX loading spinner. Once the AJAX request is finished,
assuming success, the contents of the division that encloses the listbox
is rewritten. Since the AJAX spinner gif is included within that division, it
is effectively removed and its display is stopped.

But this means that the next time a user chooses to display a listbox,
the animated Ajax-loading-spinner image cannot be displayed since the
image element containing it no longer exists. The way to solve this is to
make sure that the image element is added back to the division after
output of the listbox. This is where the append function comes in handy.

See http://docs.jquery.com/Ajax_Events for more details about global
versus local AJAX events and http://api.jquery.com/jQuery.ajax/ for
details on various AJAX settings.

3. Processing Privacy Settings Form Data

Data from each privacy settings form is stored in the bp-authz $_POST
array. This array is a multidimensional array whose stored data format
depends on the type of privacy settings form being used: tiered or single.

Tiered privacy forms provide a multi-level privacy settings view that allows
users to apply a given ACL setting globally, by group, or by individual item

28

http://docs.jquery.com/Ajax_Events
http://docs.jquery.com/Ajax_Events
http://api.jquery.com/jQuery.ajax/
http://api.jquery.com/jQuery.ajax/

(single). Single privacy forms contain the data for a simple list of individual
privacy items.

What is a tiered privacy settings form? A tiered privacy from contains three
sections:

1. Global: apply selected ACL setting across the ACL recordset
2. Group: apply selected ACL setting to all privacy items in a given

privacy group (i.e., Field Group, Activity Group)
3. Single: apply selected ACL setting to a single privacy item (i.e., field

ID, specific activity of an Activity Group, “Who can request
friendship” item, etcetera)

a. Overview of fields sent to $_POST array

[id] = unique ID; populated from ACL Main table record ID or null if new
record

[filtered_component] = name of BuddyPress core component to which
ACL settings apply

[filtered_item] = For xprofile data: profile_global | profile_group |
profile_field; for activity data: activity_global | activity_group | activity_field;
for all other components, this is value depends on the privacy item.

[item_id] = The identifiable ID associated with item; as an example, a
xprofile field ID or xprofile group ID; for all other BuddyPress core
components, this issue becomes clouded. See subsection d below for
more details (creating a Unique Item ID When BuddyPress Does Not Offer
One).

[acl] = the ACL (privacy level) to apply to given privacy item

For Global only:
[save_global] = boolean to indicate whether ACL settings should be
applied across ACL recordset

For Groups only:
[save_group] = boolean to indicate whether ACL settings should be applied
across given group

29

For Single items only: **** Or is this for all items?
[keep_list]

b. Tiered Privacy Form Data Array Structure and Array Element
Levels

You might be wondering why group elements in the multi-tiered array are
positioned at the same level as the global element (both at Level 1). The
reason is that for a given core BuddyPress component, there is no benefit
in simultaneously storing a global privacy record and a group privacy
record in the ACL tables.

If a user has indicated that a given ACL setting should be applied globally
across an ACL recordset, then that implies that the global ACL setting
should also apply to each group as well. If a user has selected an ACL
setting to be applied within a group, then that implies that the global setting
is not to be applied. Thus, there is never a case when both global and
group ACL settings should coexist in an ACL recordset for the same
component for a given user.

However, global and group records are used internally to BP Privacy for
the sole purpose of offering users multi-tiered privacy settings screens.
The stored values are not used in any of the privacy filtering routines as
BuddyPress does not recognize these data as core-generated data. This
means that in order for the user to derive value from setting a global- or
group-level ACL, the data for each individual field–found within each
['singles'] array–must actually be saved as well.

For instance, the Field ID of each xprofile field or the activity type within an
activity type group must be stored in the ACL recordset irrespective of
whether or not a user has indicated that a global or group ACL should be
applied. All of this complex code looping is solely for the benefit of
providing multi-tiered privacy settings functionality.

Multi-tiered Privacy Form Data Array Structure and Array Element
Levels

Level 1:
['global']

30

" " " "
" Level 2:
" ['id']
" ['filtered_component']
" ['filtered_item']
" ['item_id']
" ['group_user_list_old']
" ['acl']
" ['grouplist']
" --> reserved for later use ['keep_grouplist']
" ['userlist']
" --> reserved for later use ['keep_userlist']
" ['save_global']

Level 1:
['groups']
" " " "
" Level 2:
" ['group-###']
" " " " " "
" " Level 3:
" " ['id']
" " ['filtered_component']
" " ['filtered_item']
" " ['item_id']
" " ['group_user_list_old']
" " ['acl']

" ['grouplist']
" --> reserved for later use ['keep_grouplist']
" ['userlist']
" --> reserved for later use ['keep_userlist']

" " ['save_group']
" " ['singles']
" " "
" " " Level 4:
" " " ['single-###']
" " " " " "
" " " " Level 5:
" " " " ['id']
" " " " ['filtered_component']

31

" " " " ['filtered_item']
" " " " ['item_id']
" " " " ['group_user_list_old']
" " " " ['acl']

" ['grouplist']
" --> reserved for later use ['keep_grouplist']
" ['userlist']
" --> reserved for later use ['keep_userlist']

c. Single Privacy Form Data Array Structure and Array Element Levels

Level 1:
['singles']

" Level 2:
" ['single-###']
" "
" " Level 3:
" " ['id']
" " ['filtered_component']
" " ['filtered_item']
" " ['item_id']
" " ['group_user_list_old']
" " ['acl']

" ['grouplist']
" --> reserved for later use ['keep_grouplist']
" ['userlist']
" --> reserved for later use ['keep_userlist']

d. Creating a Unique Item ID When BuddyPress Does Not Offer One

Unfortunately, there are a number of instances where BuddyPress
stores data that is not easy for a developer to find. Instead of using a
lookup table, key/value pairs are used to store datasets in object
arrays that are manually rebuffered into memory each time a page is
loaded.

32

One such case is that of activity actions. These get stored in memory
in the $bp->activity->actions object array subelement. Because of this,
BP Privacy has to attempt to create a unique identifier for each activity
so that it can properly identify it in the main ACL table. Unlike the
Xprofile component that offers unique field group and field IDs be
virtue the auto-incremented ID field, when it comes to privacy, most
other components do not offer unique numeric identifiers that a
developer can count on never changing.

This is not a desirable way in which to handle this issue but as
BuddyPress was not designed with privacy as a foundational element,
we have to bend and retrofit the exposed data that BuddyPress offers
to fit the needs of the privacy codebase as best as possible.

One such “bending” is that of creating unique Item IDs for BuddyPress
core datum that does not offer any. This is seen mainly in the tiered
activity settings form where a unique item ID is manufactured for
activity groupings. Without a unique item ID, group-level privacy
filtering would not be possible for activity actions.

For the field level, or single privacy item level, when can get away with
using the value zero in the item ID field of the main ACL table as the
filtered_item value can serve as a surrogate unique identifier. This of
course is not desirable as it is very possible (and even likely) that in
some point in the future the BuddyPress core developers may change
the text of any of the values that get stored in the filtered_item field of
main ACL table.

This would result in significant issues, causing BP Privacy to not be
able to locate the proper data in the future, in essence causing
orphaned records. This is another reason why it is crucial to offer
unique identifiers. With a unique identifier based off of a tableʼs auto-
incremented ID field, it would be more unlikely that data would
become orphaned by changes made to to BP coreʼs values.

Letʼs look out how we attempt to create a unique item ID for group-
level activities. It is important to note that this technique is not fool
proof. It is possible, but unlikely, that the generated item ID will not be
unique. As stated above, it is also possible that in future versions of
BuddyPress, the core development team may change the name of an

33

action group. If that happens, then this technique will fail the next time
the Activity settings screen is loaded. But, we have no choice but to
attempt to create a unique item ID.

You could ask why we do not just store the text-based name of the
activity group as the unique item ID. We could, but the same issues
would remain. If the activity name is changed, then the uniqueness of
the item ID is lost and the underlying ACL data gets orphaned. So,
instead of requiring the storing of alphanumeric data in the item ID
field, we stick to using the more useful numeric data type.

Okay, to attempt to create a unique item ID for the activity group, we
first take a subset of the alpha characters and generate an ASCII-
based integer. We will be sampling three characters so as to limit the
overall size of the ASCII integer. As alpha characters have ASCII
codes ranging from 65 to 122, we have to make allowances for the
generated integer to be up to 9 digits long. In other words, although
not likely, the three characters could be “zzz” which would result in our
artificial integer equaling “122122122”. Therefore, the numeric field
type for the item_id field in the main ACL table is set to INT type to
allow for this much larger integer needed just for this purpose.

This technique is also used for creating unique item IDs for individual
activity actions and for some other BuddyPress items in other core
components. Based on the array text available with which to
manufacture artificial item IDs, the above detailed varies—as can be
seen with the procedure to create unique item IDs for individual
activity action items.

All of this code gymnastics could be done away with if BuddyPress
used lookup tables for select key pieces of core data instead of storing
that data in temporary object arrays.

4. Querying the ACL Tables

There are currently five different queries offered for extracting data from BP
Privacy's ACL tables. They are found in the bp-authz-classes.php file.

The first four are methods of the BP_Authz_ACL_Main class. Currently, only
the fourth one is used although the third one has been fully tested and works

34

as expected. The first two are also not used but need testing to verify that they
return the expected set:

i. get_user_acl_dataset() returns the entire ACL dataset (across all
core components) for a given user

ii. get_user_acl_recordset_by_component() returns the ACL
recordset for a given component for a given user

iii. get_user_acl_privacy_item_by_id() returns one ACL record for a
given component for a given user (record id known)

iv. get_user_acl_privacy_item_no_id() returns one ACL record for a
given component for a given user (record id not known)

The last query is a method of the BP_Authz_ACL_Lists class. It is called
indirectly by the get_user_acl_privacy_item_no_id() method.

v. get_user_group_lists_by_id() method: returns all ACL Lists
records for a given privacy item of a given component for a given
user using the Main ACL id

"
5. Saving and Deleting ACL Lists data

Note: See "Sharding Your Database" in Section B, Site Administrator's
Guide, for important information.

Although the BP Privacy codebase takes care of the complex logic
required to save ACL lists data, as a developer, you need to understand
what is taking place and why.

The ACL Lists table is a normalized table that shares a many to one
relationship with the ACL Main table. The association is made via the
relationship between the id field in the ACL Main table with the id_main
field in the ACL Lists table. This means that each record in the ACL Lists
table is associated with exactly one record in the ACL Main table. However,
each record in the ACL Main table can have many records that it is
associated with in the the ACL Lists table.

35

This is a simple table-to-table relationship that RDBMSs are designed to
model. It is also called a parent-child relationship. But the simplicity stops
there.

Most RDBMS-powered systems have their own unique business logic that
enables tabular relationships to be easily created, updated, and deleted.
However, WordPress and BuddyPress do not offer any out-of-the-box
relational business logic routines. Therefore, BP Privacy encodes its own.

The first crucial routine that enables BP Privacy to handle the one-to-many
relationship between the ACL Main table and the ACL Lists table is the
creation of the ['lists'] array subelement returned when the DB is queried
during the settings screen form load (currently via the
get_user_acl_privacy_item_no_id() method). Within that query, an object
array is built that associates each returned list record's id with its value.
Here's how the array is built for any group list records. It uses the following
array composition:

$list_items['lists']['grouplist'][$rec_id] = $acl_lists[$i]['user_group_id'];
" " " " " " "
The same logic is used for user list records, substituting the 'grouplists'
element name with the 'userlists' name.

This creates a 'lists' parent array that can contain up to two child arrays--
one for 'grouplists' and another for 'userlists'. Within each of those child
arrays, the key value pairs provide the essential information. The key is the
ACL Lists record id--the unique primary key--for the given list value. This is
used if a lists record needs to be deleted. So, we have this key value
pairing:

[id] => ['user_group_id'];

In order for the lists table to be properly managed, two pieces of data are
required: the state of the the subset of the ACL Lists table for a given ACL
Main record when the settings screen was first rendered, and the state of
the lists $_POST array buffer after the user hits the "Save Changes"
button. These two, potentially different states, are stored in two different
arrays. These two array sets are passed into the
BP_Authz_ACL_Main::save() method and are used to determine how each

36

list record should be handled. Are we inserting a new list record or deleting
a list record?

This is how the two passed-in lists arrays come into play. Using the
array_diff() function, we can compare the new array element set stored in
the object $this->group_user_list_id_array, with the old lists array element
set stored in the object $this->old_lists_array. This will tell us the
differences between the old lists state and the new one, if any. The results
will help determine what action should be performed based on this simple
table:

In Old Array" In New Array" Action
True" True" Do nothing
True" False" Delete
False" True" Insert

With ACL lists records, technically there is no need for updating. Therefore,
there are only two actions that can be taken: delete and insert new. The
creation of a new lists record is indicated when an id exists in the new lists
array set but does not exists in the old lists array set. A list record is
marked for deletion by a user deselecting it within a given listbox. The
record id will then not be in new lists array set but will exist in the old lists
array set. If a list id exists in both array sets, then no action is required.
That array element can be skipped.

We need to go through this seemingly-convoluted process to determine
what action should be taken, in particular if a list record needs to be
deleted as the user has deselected a user or group item from a list. If the
action to be taken is deletion of a list record, there is no way to know which
list record needs to be deleted if we don't have the record ID from the ACL
Lists table.

Fortunately, we do have the ACL list record ID. It is in the old lists array
that was assembled when the DB was originally queried. So if the action
equals delete, we grab the list record ID from the old array and pass that
into the BP_Authz_ACL_Lists::delete_by_id() method. Remember, as
detailed above, the old lists record id is stored as the element key.

37

6. A Note About the “Members of These Groups” and “These Users Only”
ACL Options

The ACL options “Members of These Groups” and “These Users only” use
JSON to populate the listboxes. You must be running at least PHP 5.2.0 for
this to function properly. Furthermore, the character collation setting in your
wp_config.php file must be set to UTF-8 as the PHP json_encode()
function only works with UTF-8 encoded data.

This is how it should look in your wp-config.php file:

define('DB_CHARSET', 'utf8');

Therefore, if you are running a PHP version older than 5.2.0, or your
character collation is set to something other than “utf8”, then you will need
to disable the “Members of These Groups” and “These Users only” ACL
options in the Site Administratorʼs backend under “BuddyPress > Privacy
Settings > Customize ACL Settings”.

38

