
SWFPut — Flash and HTML5 Video Plugin for WordPress

Ed Hynan <edhynan@gmail.com>

This ‘README’ serves as the main documentation for the SWFPut WordPress

plugin, and as the conventional ‘README’ as well.

1. What is it?

SWFPut is a plugin for WordPress. It pro-

vides video player programs for the HTML video

element and the flash plugin, and the means to

configure the players with video sources and play-

back attributes. There are two separate compo-

nents: the video players, and the WordPress plug-

in proper. The video players are delivered to site

visitors by the plugin as either HTML5 video

with a flash plugin program as fallback content, or

inversely as flash video primary content with

HTML5 video elements for fallback. The former

arrangement is the default (as of version 2.1), but

there is an option to enable the latter arrangement

if flash is preferred. It is not necessary to provide

for both types, one or the other type may be left

out.

Video objects may be placed in posts and

pages, or in the widget areas supported by your

theme (i.e., the plugin includes a widget). Video

is placed in posts and pages with a shortcode; if

you do not know what a shortcode is, or do not

want to deal with them, that’s no problem. (In

fact, it is preferable that the shortcodes not be

hand-edited, and they will not be discussed in

detail here.) The plugin adds to the post/page edi-

tor interfaces a button to insert video at the cursor,

and an easy to use dialog-type setup interface

similar to that used by WordPress core media, and

also a full featured form in a “metabox” with

additional advanced settings to setup and add, or

edit, or delete video objects. The video widget

has a similar full featured form for setup.

Video in posts may be displayed in the

WordPress visual editor, if the default visual edi-

tor is used. If the default visual editor has been

changed, for example by a plugin, the video dis-

play in the editor will probably not work. If there

are problems, video display in the editor may be

disabled on the SWFPut settings page.

SWFPut does not depend on JavaScript on

the front end, but it is used for the HTML5 video

player, and for proper resizing of the video dis-

play area. If JavaScript is not available, HTML5

video will have the interface provided by the web

browser, and the flash video will be largely unaf-

fected (it only uses JavaScript to check whether it

is running on a mobile platform). “Responsive”

display resizing will not be possible if JavaScript

is not available, so reasonable dimensions should

be given in the setup form.

The SWFPut flash video player has been

coded to work well with the free Gnash web

browser plugin, as well as the closed binary-only

proprietary version in common use. As of this

writing, Gnash does not handle MP4 files well,

ev en though it handles H.264 video and AAC

audio if they are in an FLV container file. There-

fore, it is a good idea to prepare FLV files for

flash if you can.

2. Building From the Source

SWFPut is distributed from the WordPress

plugin repository as a ZIP archive ready for

installation on a WordPress site. Therefore, there

is no need to build the plugin before use.

(You may skip forward to the Usage section

if you don’t intend to modify the player or plug-

in.)

All necessary sources are included in the

distributed archive, but the necessary build tools

are not. The plugin is maintained with a POSIX

makefile, which in turn expects a POSIX Bourne

shell. Additional requirements are the PHP com-

mand-line interface with the Ming extension to

build the flash video player, PERL packages to

minify JavaScript, GNU gettext for localization

sources, GNU groff (and a small C program) to

make the forms of this document, the portable



-2-

Info-ZIP zip command to make the archive, and

various POSIX tools such as sed.

The actual plugin is composed of PHP

code, and does not require compilation or link

editing. The flash video player is a compiled pro-

gram, but a binary is included in the installable

package so that use does not require compilation

by the user.

The Makefile default target builds as neces-

sary and then creates the ZIP file. The Makefile is

the build documentation.

3. Usage

SWFPut installs an item under the “Set-

tings” menu named “SWFPut Plugin”. Selecting

that should produce the plugin’s configuration

page. The configuration page includes optional

verbose help, and so it will not be described here.

In the post and page editors, the plugin adds

a button, labelled “Add SWFPut Video,” next to

the “Add Media” button. This will insert a place-

holder video at the cursor position. When

selected, a pencil button will appear, which

invokes a graphical setup dialog. This dialog is

expected to be easy and intuitive, so it is not elab-

orated on here.

SWFPut also adds an interactive form in a

new metabox with the title “SWFPut Video”. This

form has advanced settings not available in the

graphical dialog. Directly under the title is a row

of buttons. Under the row of buttons, the bulk of

the form is placed in three sections entitled

“Media”, “Dimensions”, and “Behavior”. The

title bar of each section has a button that will hide

or show that section, which might help if the

height of the form is greater than that of the dis-

play.

3.1. Form Buttons

• Fill from post: When the post (or

page) already contains a SWFPut

video object (i.e., shortcode), this

will find it in the editor and fill the

form with its details. A post may

contain any number of SWFPut

video objects. If there is more than

one, then repeatedly using this button

will cycle through each in turn.

• Replace current in post: When the

form has been filled with the details

of a video object using “Fill from

post” (described above), or if it con-

tains the details of a new video object

that has just been added, the form

items may be changed, and this but-

ton will edit the associated shortcode

with the changes.

• Delete current in post: As described

above for “Replace current in post”,

except that rather than changing the

details of the shortcode, it is deleted.

• Place new in post: After making

sure that the cursor (insertion point)

in the editor is at the desired position,

and filling out the form items, use

this button to add a new shortcode

(video).

• Reset defaults: Except for the “Cap-

tion” text field, all form items are set

to default values, or cleared. It is

assumed that text typed into the

“Caption” field would be better main-

tained by hand, so that field is not

cleared.

3.2. Form Sections

3.2.1. Media

• Caption: A video object is set in a

page as an image would be, with the

same border, and an optional caption,

which may be set here. If this field is

left blank, there will be no caption.

• Flash video URL or media library

ID: A video URL may be given here,

or an attachment ID valid for the

WordPress database. Or more conve-

niently, this field may be set from the

two drop-down lists described next.

Acceptable protocols are HTTP,

HTTPS, and RTMP. Support for

RTMP is only partial and very lim-

ited. See “Playpath (rtmp)” below.

Acceptable file (media) types are

FLV, MP4.

• Select flash video URL from

uploads directory: This is a drop-

down list from which the URL field

may be set. The WordPress



-3-

uploads directory is searched

recursively for files with the suffixes

FLV, MP4, and for each a URL is

added to this list. This has the advan-

tage that it will find files added by

hand upload (rather than with the

‘add media’ interface) if they are

placed in uploads or a directory

under it.

• Select ID for flash video from

media library: This is a drop-down

list from which the URL field may be

set, as above, with the difference that

it searches the WordPress media data-

base, and presents the suitable file-

names with their media ID’s.

• HTML5 video URLs or media

library ID’s: A series of URLs for

the HTML5 video player. If more

than one URL is given, they should

be separated by the ‘|’ (pipe) charac-

ter. Each individual URL may be

appended with an argument for the

‘type’ attribute of the video ele-

ment, separated from the URL by a

‘?’ character (do not include the

‘type’ keyword; give only the value

that should appear between quotes in

the type argument, and although

many web examples show a space

after the comma separating the video

and audio codec names, browsers

might reject the source because of the

space, so it should be left out)1. If

more than one is given they will

appear in order. The browser should

use the first type that it supports. The

MP4, WEBM, and OGG types have

varied support among web browsers,

so ideally all three formats should be

provided.

• Select HTML5 video URL from

uploads directory: (See next item

below.)

• Select ID for HTML5 video from

media library: These selection items

work much like the similarly named

items pertaining to flash URLs, as

1 For example:

videos/cat.mp4?video/mp4|
videos/cat.webm?video/webm;
codecs=vp8,vorbis|
videos/cat.ogv?video/ogg;
codecs=theora,vorbis.

described above. These show files

with MP4 or OGG or OGV or

WEBM extensions, suitable for the

HTML5 video player. An important

difference is that when you make a

selection, the entry field is appended,

rather than replaced, on the assump-

tion that you are adding multiple

resources for the necessary HTML5

video formats. When the URL field

content is appended, a ‘|’ (pipe)

character is used as a separator. See

“HTML5 video URLs or media

library ID’s” above.

• Playpath (rtmp): If the URL field

for flash video is given an RTMP

URL, the ‘playpath’ is given here.

Note that only the simplest RTMP

connections are supported: those

requiring only the playpath. This

item has bearing on HTML5 video.

• Url of initial image file (optional):

A URL for a ‘poster’ image file may

be placed here. When the player is

loaded, if it is not set to play on load,

this image is displayed until the play

button is invoked. Accepted image

types are JPEG, PNG, and GIF.

• Load image from uploads direc-

tory: This is a drop-down list from

which the “Url of initial image file

(optional)” field may be set. The

WordPress uploads directory is

searched recursively for files with the

suffixes listed as acceptable for that

field, and for each a URL is placed in

this list. This has the advantage that

it will find files added by hand upload

(rather than with the ‘add media’

interface) if they are placed in

uploads or a directory under it.

• Load image ID from media library:

This is a drop-down list from which

the “Url of initial image file

(optional)” field may be set, as

above, with the difference that it

searches the WordPress media data-

base, and presents the suitable file-

names with their media ID’s.

• Use initial image as no-video alter-

nate: If an initial image was given,

then also use it as fallback display

when video is not supported. This



-4-

option is on by default.

3.2.2. Dimensions

• Pixel Width × Height: Set these to

the desired size of the video player’s

embedded window. This does not

need to be the same as the display

size of the video to be played, but the

appearance will be best if the aspect

of the player’s display is the same as

the display aspect of the video. For

example, with a video of a size of

400×300 setting these to fields to

320×240 would look good, as the

width:height ratios are the same.

The player will scale the video to fit

within its display, but it maintains the

aspect ratio, so horizontal or vertical

black (unused) areas will be visible if

the aspect ratios do not match.

These dimensions are not fixed

unless scripts are disabled in the

browser. Where scripting is avail-

able, the video display area is resized

in concert with changes that the

browser applies to the surrounding

elements. This is particularly impor-

tant on mobile platforms, where the

browser will probably make extreme

size adjustments for the small display

size. This “responsive” behavior will

depend on the current theme being

responsive.

• Mobile width: This is to provide a

width to use only if a mobile browser

is detected; the height is automati-

cally proportional, according to the

regular “Pixel Width × Height”

dimensions described above.

This might be most useful for wid-

gets placed on a ‘sidebar,’ because a

sidebar might be placed below, rather

than beside, the main content. In this

case more effective display width

might be available, and a wider dis-

play might be suitable. This feature

is disabled with a value of ’0,’ which

is the default, and has no effect if the

browser provides a user agent string

not known as a mobile platform.

• Auto aspect: This enables a feature

meant to be helpful when the video to

be played might have been prepared

as DVD-Video (NTSC or PAL) for

standard (non-widescreen) 4:3 dis-

play. Such video has non-square pix-

els; i.e., its actual width×height does

not match its intended display aspect.

With this check enabled, the video

player will force display at 4:3 ratio

if the video dimensions match one of

the DVD-Video pixel sizes. This is

not suitable for widescreen DVD-

Video, which has one of the expected

DVD-Video pixel sizes, but is meant

to be displayed with a 16:9 aspect.

• Display aspect: Set the intended dis-

play aspect ratio in this field if you

know that the video has non-square

pixels. A value of 0 (zero) disables

this field; otherwise, a value may be

given as a decimal number (e.g.,

1.33333333) or as a ratio using ‘:’ or

‘x’ or ‘/’ as separator (e.g., 4:3, or

16x9, or 20/11, etc.—several other

characters will also be accepted as a

separator, but it’s sensible to use

those listed here).

• Pixel aspect: Similar to “Display

aspect” above, but this field takes the

source (pixel) aspect ratio rather than

the display aspect in the unlikely

ev ent that that value is more readily

available. For example, video pre-

pared for NTSC DVD at 720×480

pixels intended for standard (4:3) dis-

play has a pixel aspect ratio of 8:9,

and at 352×240 a pixel aspect ratio of

10:11. As above, ‘0’ disables this

field.

3.2.3. Behavior

• Alignment: This is an exclusive

selection with options ‘left,’ ‘center,’

‘right,’ and ‘none.’ The default is

center. This option will set the align-

ment of the video display within the

page or post by adding a CSS class

called one of ‘.alignleft,’ ‘.aligncen-

ter,’ ‘.alignright,’ or ‘.alignnone.’ A

WordPress theme should provide

CSS definitions for the first three of

those classes. The fourth, .alignnone,

is meant to use the alignment that the



-5-

video markup inherits, whatever it

might be. (If there is a CSS defini-

tion for .alignnone hopefully it will

have a sensible effect.)

Because this option works with

classes, which depend on CSS defini-

tions, it is ultimately the user’s Word-

Press theme that provide the effect of

this option. For example, if a theme

provides a left or right margin for the

‘.widget’ class, then this plugin’s

video widget might not align accord-

ing to this option.

• Video preload: This is an exclusive

selection. HTML5 video allows a

“preload” attribute with a value of

“none” or “metadata” or “auto.” This

option provides those three values

and one special selection: “per initial

image.” This special selection will

use “none” if an “initial image file” is

set (in the Media section of the

form), or “metadata” if an initial

image, or poster, is not set.

The “metadata” selection allows the

browser to fetch a small part of the

video file with information such as

video dimensions, duration, and the

codec types2. This can be useful

because a browser might also receive

some of the video frames, and so it

may display one frame as a ‘poster.’

(Whether a frame displayed this way

is suitable is not certain.)

If “none” is selected the browser will

not fetch any of the video until it is

played, and so without an initial

image, the video region on the page

will be solid black until played.

The “auto” selection should be

avoided unless you know what it does

and that you need it. This is because

with “auto” the browser may choose

to fetch the entire video even before

the visitor actively plays the video.

Video files can be quite large, and a

large unsolicited download might be

unkind to your site’s visitors; it might

ev en cause a visitor additional

charges depending on their

2 In most of the supported video file types, the

browser should be able to find the metadata without

needing to retrieve too much data.

connection service. Also consider

your server and network load.

The flash player does not have simi-

lar attributes, but will behave simi-

larly with regard to an initial image:

if one was not set, and the preload

option is not “none,” then the player

will start playback and let it advance

for a small random period, and then

pause playback, leaving a visible

frame to act as a ‘poster.’

• Initial volume: The video player has

a volume control that visitors can

adjust. This field will set a default

volume. If the web browser flash

plugin is permitted to save values

locally on a visitor’s machine, then

their adjustment will be saved, and

will be used rather than the default

when they visit again (or reload the

page). User settings are not saved for

the HTML5 video player presently.

• Play on load: This will cause the

video to begin playing as soon as the

player program is loaded. When this

is not set, the player waits for the

play button.

Above, it was stated that if scripting

is not available in the web browser,

HTML5 video will have the default

appearance and behavior provided by

the web browser. The play on load

option will not be in effect in that

case, because while the video ele-

ment can take an autoplay attribute,

that cannot reliably work with the

scripted HTML5 player since it

might begin before the script gains

control of the video element.

• Loop play: This will cause the

medium to play again from the begin-

ning each time it ends. When this is

not set, the video plays once, and

then pauses.

• Hide control bar initially: This will

cause the control bar to hide a few

seconds after the player loads (e.g.,

so that it does not obscure an initial

image). Note that this also changes

the control bar behavior in general:

the bar will show whenever mouse

movement is detected within the

embedded window, and hide again



-6-

when there has been no mouse move-

ment for a few seconds.

When this is not set, the control bar is

left showing when the player loads,

and thereafter is always shown when

the mouse is within the embedded

window, and is always hidden when

the mouse is detected leaving the

window (when the mouse is moved

out of the player window with rapid

motion the browser or plugin often

fails to deliver a ‘mouse has left’

ev ent to the player program, so hid-

ing the bar is not always reliable).

• Hide and disable control bar:

Enable this if the media should play

through without interruption.

• Allow full screen: This enables a

control bar button that will place the

video in full-screen mode.

• Control bar Height (30-60): The

control bar height can be adjusted

with this. The range 30-60 merely

suggests useful sizes; it is not a fixed

boundary. A good size would be

influenced by the specified display

dimensions on non-mobile platforms,

but also by usability on mobile plat-

forms. Test, please.

3.3. The Widget

The player can also be used as a widget.

The “Appearance” menu “Widgets” item should

produce the “Widgets” page which, after installa-

tion of SWFPut, should show “SWFPut Video

Player” under “Av ailable Widgets”. After drag-

ging this to a widget area the setup form should

display (click the arrow near the title if neces-

sary). The widget’s form has the same items

described under “Form Sections” above,

although this form is not displayed in the three

separate sections and does not have the buttons

near the top. There is one additional item at the

top of the widget form: a text field named “Wid-

get title”. Not surprisingly, the contents of that

field will be displayed as a title above the widget

on the pages that include the particular widget

area used.

4. License

This program and all files included in the

distribution archive are under the GNU GPL, ver-

sion 3. See the file COPYING, which should be

present in the top-level directory of the distribu-

tion archive; or, see the license at

http://www.gnu.org/licenses/.


